- 相關(guān)推薦
高等數(shù)學(xué)1重要知識(shí)點(diǎn)總結(jié)
在我們的學(xué)習(xí)時(shí)代,說(shuō)到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。掌握知識(shí)點(diǎn)有助于大家更好的學(xué)習(xí)。下面是小編為大家整理的高等數(shù)學(xué)1重要知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
高等數(shù)學(xué)1重要知識(shí)點(diǎn)總結(jié)1
1、函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類(lèi)型的判斷、無(wú)窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無(wú)實(shí)根。
2、一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線(xiàn)漸近線(xiàn)的求法。
3、一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
4、向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線(xiàn)方程及其求法、平面與平面、平面與直線(xiàn)、直線(xiàn)與直線(xiàn)之間的夾角,并會(huì)利用平面、直線(xiàn)的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問(wèn)題等,該部分一般不單獨(dú)考查,主要作為曲線(xiàn)積分和曲面積分的基礎(chǔ)。
5、多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問(wèn)題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無(wú)條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線(xiàn)的切線(xiàn)與法平面、曲面的切平面與法線(xiàn)。
6、多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的`計(jì)算、兩類(lèi)曲線(xiàn)積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
7、無(wú)窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開(kāi)問(wèn)題。
8、常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線(xiàn)性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線(xiàn)形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
高等數(shù)學(xué)1重要知識(shí)點(diǎn)總結(jié)2
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的.表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
①任何一個(gè)集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
④如果AíB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類(lèi)型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
【高等數(shù)學(xué)1重要知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)07-31
高等數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)07-17
高等數(shù)學(xué)大二知識(shí)點(diǎn)總結(jié)07-23
高等數(shù)學(xué)知識(shí)點(diǎn)10-24
大學(xué)高等數(shù)學(xué)二知識(shí)點(diǎn)總結(jié)08-17
高職高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-03
同濟(jì)大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-01
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)09-17