午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

高中數(shù)學知識點總結(jié)

時間:2024-11-01 19:20:18 賽賽 總結(jié) 我要投稿

高中數(shù)學知識點總結(jié)

  在平時的學習中,相信大家一定都接觸過知識點吧!知識點也可以通俗的理解為重要的內(nèi)容。想要一份整理好的知識點嗎?以下是小編幫大家整理的高中數(shù)學知識點總結(jié),歡迎閱讀與收藏。

高中數(shù)學知識點總結(jié)

  高中數(shù)學知識點總結(jié) 1

  簡單隨機抽樣

  (1)總體和樣本

 、僭诮y(tǒng)計學中,把研究對象的全體叫做總體。

 、诎衙總研究對象叫做個體。

 、郯芽傮w中個體的總數(shù)叫做總體容量。

 、転榱搜芯靠傮w的有關性質(zhì),一般從總體中隨機抽取一部分:x1,x2,…,__研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。

  (2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨

  機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

  (3)簡單隨機抽樣常用的方法:

 、俪楹灧;

 、陔S機數(shù)表法;

 、塾嬎銠C模擬法;

  ③使用統(tǒng)計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設計中,主要考慮:

 、倏傮w變異情況;

  ②允許誤差范圍;

 、鄹怕时WC程度。

  (4)抽簽法:

 、俳o調(diào)查對象群體中的每一個對象編號;

 、跍蕚涑楹灥墓ぞ,實施抽簽;

 、蹖颖局械拿恳粋個體進行測量或調(diào)查

  (5)隨機數(shù)表法

  高中數(shù)學知識點總結(jié) 2

  空間兩條直線只有三種位置關系:平行、相交、異面

  1、按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  2、若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;

  (2)沒有公共點——平行或異面

  直線和平面的位置關系:

  直線和平面只有三種位置關系:在平面內(nèi)、與平面相交、與平面平行

  ①直線在平面內(nèi)——有無數(shù)個公共點

 、谥本和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  高中數(shù)學知識點總結(jié) 3

  一、直線與方程高考考試內(nèi)容及考試要求:

  考試內(nèi)容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

  2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關系;

  二、直線與方程

  課標要求:

  1.在平面直角坐標系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關系;

  4.會用代數(shù)的方法解決直線的有關問題,包括求兩直線的交點,判斷兩條直線的位置關系,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸平行或重合時,規(guī)定α= 0°.

  傾斜角α的取值范圍:0°≤α<180°.當直線l與x軸垂直時,α= 90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

  (1)當直線l與x軸平行或重合時,α=0°,k = tan0°=0;

  (2)當直線l與x軸垂直時,α= 90°,k不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

  (若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  4.兩條直線的平行與垂直的判定

  (1)若l1,l2均存在斜率且不重合:

 、;②

  注:上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。

  高中數(shù)學知識點總結(jié) 4

  集合的分類:

  (1)按元素屬性分類,如點集,數(shù)集。

  (2)按元素的個數(shù)多少,分為有/無限集

  關于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構(gòu)成集合,關鍵在于看這些對象是否有明確的標準。

  集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或NX。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

  實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應的數(shù)。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高中數(shù)學知識點總結(jié) 5

  一、求導數(shù)的方法

  (1)基本求導公式

  (2)導數(shù)的四則運算

  (3)復合函數(shù)的導數(shù)

  設在點x處可導,y=在點處可導,則復合函數(shù)在點x處可導,且即__

  二、關于極限

  1、數(shù)列的極限:

  粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作

  三、導數(shù)的概念

  1、在處的導數(shù)。

  2、在的導數(shù)。

  3、函數(shù)在點處的導數(shù)的幾何意義:

  函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,

  即k=,相應的切線方程是__

  注:函數(shù)的導函數(shù)在時的函數(shù)值,就是在處的導數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導數(shù)的綜合運用

  (一)曲線的切線

  函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數(shù)求曲線的切線方程。具體求法分兩步:

  (1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率k=__

  (2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。

  高中數(shù)學知識點總結(jié) 6

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當?shù)淖鴺讼,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  4、參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

 、俳ㄏ怠⑦m當?shù)淖鴺讼?

 、谠O點——設軌跡上的任一點P(x,y);

 、哿惺健谐鰟狱cp所滿足的關系式;

 、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

  高中數(shù)學知識點總結(jié) 7

  1、命題的四種形式及其相互關系是什么?

  (互為逆否關系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構(gòu)成映射?

  (一對一,多對一,允許B中有元素無原象。)

  3、函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

  (定義域、對應法則、值域)

  4、反函數(shù)存在的條件是什么?

  (一一對應函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

  ①互為反函數(shù)的圖象關于直線y=x對稱;

 、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關于原點對稱)

  高中數(shù)學知識點總結(jié) 8

 。1)不等關系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。

  (2)一元二次不等式

 、俳(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

  ②通過函數(shù)圖象了解一元二次不等式與相應函數(shù)、方程的聯(lián)系。

  ③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

  (3)二元一次不等式組與簡單線性規(guī)劃問題

 、購膶嶋H情境中抽象出二元一次不等式組。

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見例2)。

 、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

  (4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過程。

 、跁没静坏仁浇鉀Q簡單的(。┲祮栴}。

  高中數(shù)學知識點總結(jié) 9

  一、集合間的關系

  1.子集:如果集合A中所有元素都是集合B中的元素,則稱集合A為集合B的子集。

  2.真子集:如果集合AB,但存在元素a∈B,且a不屬于A,則稱集合A是集合B的真子集。

  3.集合相等:集合A與集合B中元素相同那么就說集合A與集合B相等。

  子集:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含于B”(或“B包含A”),這時我們說集合是集合的子集,更多集合關系的知識點見集合間的基本關系

  二、集合的運算

  1.并集

  并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

  2.交集

  交集: 以屬于A且屬于B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

  高中數(shù)學知識點總結(jié) 10

  1、一元二次方程的解

  -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關系x1+x2=-b/ax1x2=c/a注:韋達定理

  判別式b2-4a=0注:方程有相等的兩實根

  b2-4ac>0注:方程有兩個不相等的個實根

  b2-4ac<0注:方程有共軛復數(shù)根

  2、立體圖形及平面圖形的公式

  圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  拋物線標準方程y2=2pxy2=-2px2=2pyx2=-2py

  直棱柱側(cè)面積S=cxh斜棱柱側(cè)面積S=cxh

  正棱錐側(cè)面積S=1/2cxh正棱臺側(cè)面積S=1/2(c+c)h

  圓臺側(cè)面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pixr2

  圓柱側(cè)面積S=cxh=2pixh圓錐側(cè)面積S=1/2xcxl=pixrxl

  弧長公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr

  錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h

  斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長

  柱體體積公式V=sxh圓柱體V=pixr2h

  3、圖形周長、面積、體積公式

  長方形的周長=(長+寬)×2

  正方形的周長=邊長×4

  長方形的面積=長×寬

  正方形的面積=邊長×邊長

  三角形的面積

  已知三角形底a,高h,則S=ah/2

  已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)

  和:(a+b+c)x(a+b-c)x1/4

  已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

  設三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

  則三角形面積=(a+b+c)r/2

  設三角形三邊分別為a、b、c,外接圓半徑為r

  則三角形面積=abc/4r

  常用的三角函數(shù)公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

【高中數(shù)學知識點總結(jié)】相關文章:

高中數(shù)學知識點全總結(jié)03-07

高中數(shù)學總結(jié)02-28

高中數(shù)學教研總結(jié)12-13

月考總結(jié)高中數(shù)學12-27

物理知識點總結(jié)05-09

語文知識點總結(jié)12-23

物理知識點總結(jié)03-02

傳記知識點總結(jié)11-10

小升初英語知識點總結(jié)06-24

聲現(xiàn)象知識點總結(jié)04-24