- 相關(guān)推薦
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,它可以使我們更有效率,因此,讓我們寫(xiě)一份總結(jié)吧。但是卻發(fā)現(xiàn)不知道該寫(xiě)些什么,下面是小編整理的八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 1
一、平移
1、定義
在平面內(nèi),將一個(gè)圖形整體沿某方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移。
2、性質(zhì)
平移前后兩個(gè)圖形是全等圖形,對(duì)應(yīng)點(diǎn)連線平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個(gè)圖形繞某一定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn),這個(gè)定點(diǎn)稱(chēng)為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個(gè)圖形是全等圖形,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
三、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、設(shè)多邊形的邊數(shù)為n,則多邊形的對(duì)角線共有n(n3)2條。從n邊形的一個(gè)頂點(diǎn)出發(fā)能引(n-3)條對(duì)角線,將n邊形分成(n-2)個(gè)三角形。
四.平行四邊形
1、平行四邊形的定義
兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
。1)平行四邊形的對(duì)邊平行且相等。
。2)平行四邊形相鄰的角互補(bǔ),對(duì)角相等
。3)平行四邊形的對(duì)角線互相平分。
。4)平行四邊形是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心是對(duì)角線的交點(diǎn)。
常用點(diǎn):
。1)若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段的中點(diǎn)是對(duì)角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
。2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
。1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形
。2)定理1:兩組對(duì)角分別相等的四邊形是平行四邊形
。3)定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形
。4)定理3:對(duì)角線互相平分的四邊形是平行四邊形
。5)定理4:一組對(duì)邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長(zhǎng)x高=ah
五、矩形
1、矩形的定義
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
。1)矩形的對(duì)邊平行且相等
。2)矩形的四個(gè)角都是直角
。3)矩形的對(duì)角線相等且互相平分
。4)矩形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形;對(duì)稱(chēng)中心是對(duì)角線的交點(diǎn)(對(duì)稱(chēng)中心到矩形四個(gè)頂點(diǎn)的距離相等);對(duì)稱(chēng)軸有兩條,是對(duì)邊中點(diǎn)連線所在的直線。
3、矩形的判定
。1)定義:有一個(gè)角是直角的平行四邊形是矩形
(2)定理1:有三個(gè)角是直角的四邊形是矩形
。3)定理2:對(duì)角線相等的平行四邊形是矩形
4、矩形的面積S矩形=長(zhǎng)x寬=ab
六、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質(zhì)
(1)菱形的四條邊相等,對(duì)邊平行
。2)菱形的相鄰的角互補(bǔ),對(duì)角相等
(3)菱形的對(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角
。4)菱形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形;對(duì)稱(chēng)中心是對(duì)角線的交點(diǎn)(對(duì)稱(chēng)中心到菱形四條邊的距離相等);對(duì)稱(chēng)軸有兩條,是對(duì)角線所在的直線。
3、菱形的判定
。1)定義:有一組鄰邊相等的平行四邊形是菱形
。2)定理1:四邊都相等的四邊形是菱形
。3)定理2:對(duì)角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長(zhǎng)x高=兩條對(duì)角線乘積的一半
七.正方形
1、正方形的定義
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
。1)正方形四條邊都相等,對(duì)邊平行
。2)正方形的四個(gè)角都是直角
(3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角
。4)正方形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形;對(duì)稱(chēng)中心是對(duì)角線的交點(diǎn);對(duì)稱(chēng)軸有四條,是對(duì)角線所在的直線和對(duì)邊中點(diǎn)連線所在的直線。
3、正方形的判定
判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長(zhǎng)為a,對(duì)角線長(zhǎng)為bS正方形=a2b22
八、梯形
(一)梯形的相關(guān)概念
1、梯形的定義
一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長(zhǎng)的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。
2、梯形的判定
(1)定義:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。
。2)一組對(duì)邊平行且不相等的四邊形是梯形。
。ǘ┲苯翘菪蔚亩x:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分類(lèi)如下:
1、一般梯形
2、梯形直角梯形
3、特殊梯形
4、等腰梯形
(三)等腰梯形
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
。1)等腰梯形的兩腰相等,兩底平行。
。2)等腰梯形同一底上的兩個(gè)角相等,同一腰上的兩個(gè)角互補(bǔ)。
。3)等腰梯形的對(duì)角線相等。
。4)等腰梯形是軸對(duì)稱(chēng)圖形,它只有一條對(duì)稱(chēng)軸,即兩底的垂直平分線。
3、等腰梯形的判定
。1)定義:兩腰相等的梯形是等腰梯形
。2)定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
。3)對(duì)角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
。ㄋ模┨菪蔚拿娣e
。1)如圖,S梯形ABCD12(CDAB)DE
(2)梯形中有關(guān)圖形的面積:
、賁ABDSBAC;
、赟AODSBOC;
、跾ADCSBCD
八、中心對(duì)稱(chēng)圖形
1、定義
在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)叫做它的對(duì)稱(chēng)中心。
2、性質(zhì)
。1)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等形。
。2)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分。
。3)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 2
一、勾股定理
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
我國(guó)古代把直角三角形中,較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”。結(jié)論為:“勾三股四弦五”。
a2+b2=c2
1、如果三角形的三邊長(zhǎng)a、b、c滿(mǎn)足a+b=c,那么這個(gè)三角形是直角三角形。
2、滿(mǎn)足a+b=c的3個(gè)正整數(shù)a、b、c稱(chēng)為勾股數(shù)。(例如,3、4、5是一組勾股數(shù))。利用勾股數(shù)可以構(gòu)造直角三角形。
二、平方根
1、定義——一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根,也稱(chēng)為二次方根。也就是說(shuō),如果x2=a,那么x就叫做a的平方根。
2、一個(gè)正數(shù)有2個(gè)平方根,它們互為相反數(shù);0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根。
3、求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方。
4、正數(shù)a有兩個(gè)平方根,其中正的平方根,也叫做a的算術(shù)平方根。
例如:4的平方根是±2,其中2叫做4的算術(shù)平方根,記作=2;2的平方根是±其中2的算術(shù)平方根。
0只有一個(gè)平方根,0的平方根也叫做0的算術(shù)平方根,即
三、立方根
1、定義——一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根,也稱(chēng)為三次方根。也就是說(shuō),如果x=a,那么x就叫做a的立方根,數(shù)a的立方根記作“,讀作“三次根號(hào)a”。
2、求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開(kāi)立方。
3、正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0。
四、實(shí)數(shù)
1、無(wú)限不循環(huán)小數(shù)稱(chēng)為無(wú)理數(shù)。
2、有理數(shù)和無(wú)理數(shù)統(tǒng)稱(chēng)為實(shí)數(shù)。
3、每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示,反之,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。
五、近似數(shù)與有效數(shù)字
1、例如,本冊(cè)數(shù)學(xué)課本約有100千字,這里100是一個(gè)近似似數(shù)。
2、對(duì)一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都稱(chēng)為這個(gè)近似數(shù)的有效數(shù)字。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 3
1、變量與常量
在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
。1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫(huà)其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 4
1、平均數(shù)
、僖话愕,對(duì)于n個(gè)數(shù)x1x2...xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱(chēng)平均數(shù)記為。
、谠趯(shí)際問(wèn)題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)
2、中位數(shù)與眾數(shù)
、僦形粩(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)
②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量
、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。
、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息
⑥各個(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒(méi)有特別意義
3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)
4、數(shù)據(jù)的離散程度
、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱(chēng)為極差),就是刻畫(huà)數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量
、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫(huà)
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 5
(一)定義:含有兩個(gè)未知數(shù),并且未知項(xiàng)的最高次數(shù)是1的整式方程叫做二元一次方程。
(二)二元一次方程組的解法
(1)代入法
由一個(gè)二次方程和一個(gè)一次方程所組成的方程組通常用代入法來(lái)解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個(gè)方程可以分解時(shí),可采用因式分解法通過(guò)消元降次來(lái)解。
(3)配方法
將一個(gè)式子,或一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和。
(4)韋達(dá)定理法
通過(guò)韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
(5)消常數(shù)項(xiàng)法
當(dāng)方程組的兩個(gè)方程都缺一次項(xiàng)時(shí),可用消去常數(shù)項(xiàng)的方法解。
、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)
、芷渲惺莤1,x2.....xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根
、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 6
1、分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變。
2、通分:利用分式的基本性質(zhì),使分子和分母都乘以適當(dāng)?shù)恼,不改變分式的值,把幾個(gè)異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。
通分的關(guān)鍵是:確定幾個(gè)分式的最簡(jiǎn)公分母。確定最簡(jiǎn)公分母的一般方法是:(1)如果各分母都是單項(xiàng)式,那么最簡(jiǎn)公分母就是各系數(shù)的最小公倍數(shù)、相同字母的次冪、所有不同字母及指數(shù)的積。
(2)如果各分母中有多項(xiàng)式,就先把分母是多項(xiàng)式的分解因式,再參照單項(xiàng)式求最簡(jiǎn)公分母的方法,從系數(shù)、相同因式、不同因式三個(gè)方面去確定。
3、約分:根據(jù)分式的基本性質(zhì),約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。
在約分時(shí)要注意:
(1)如果分子、分母都是單項(xiàng)式,那么可直接約去分子、分母的公因式,即約去分子、分母系數(shù)的公約數(shù),相同字母的最低次冪;
(2)如果分子、分母中至少有一個(gè)多項(xiàng)式就應(yīng)先分解因式,然后找出它們的公因式再約分;
(3)約分一定要把公因式約完。
【八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)12-20
八年級(jí)上冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)優(yōu)秀12-17
初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-05
蘇教版生物八年級(jí)上冊(cè)知識(shí)點(diǎn)總結(jié)11-02
八年級(jí)物理上冊(cè)知識(shí)點(diǎn)總結(jié)02-17
數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-25
高一數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)點(diǎn)總結(jié)07-21