午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

《三角形的內角和》優(yōu)質教案

時間:2024-03-28 17:27:07 晶敏 教案 我要投稿
  • 相關推薦

《三角形的內角和》優(yōu)質教案(精選15篇)

  作為一位兢兢業(yè)業(yè)的人民教師,通常會被要求編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。那么問題來了,教案應該怎么寫?以下是小編幫大家整理的《三角形的內角和》優(yōu)質教案,希望能夠幫助到大家。

《三角形的內角和》優(yōu)質教案(精選15篇)

  《三角形的內角和》優(yōu)質教案 1

  【教學目標】

  1.學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現"三角形內角和等于180度"的規(guī)律。

  2.在探究過程中,經歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】

  探究發(fā)現和驗證"三角形的內角和為180度"的規(guī)律。

  【教學難點】

  理解并掌握三角形的內角和是180度。

  【教具準備】

  PPT課件、三角尺、各類三角形、長方形、正方形。

  【學生準備】

  各類三角形、長方形、正方形、量角器、剪刀等。

  【教學過程】

  口算訓練(出示口算題)

  訓練學生口算的速度與正確率。

  一、謎語導入

  (出示謎語)

  請畫出你猜到的圖形。誰來公布謎底?

  同桌互相看一看,你們畫出的三角形一樣嗎?

  誰來說說,你畫出的是什么三角形?(學生匯報)

  (1)銳角三角形,(銳角三角形中有幾個銳角?)

  (2)直角三角形,(直角三角形中可以有兩個直角嗎?)

  (3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)

  看來,在一個三角形中,只能有一個直角或一個鈍角,為什么不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什么奧秘呢?這節(jié)課,我們一起來學習"三角形的內角和。"(板書課題:三角形的內角和)

  看到這個課題,你有什么疑問嗎?

  (1)什么是內角?有沒有同學知道?

  內:里面,三角形里面的角。

  三角形有幾個內角呢?請指出你畫的三角形的內角,并分別標上∠1、∠2、∠3.

  (2)誰還有疑問?什么是內角和?誰來解釋?(三個內角度數的和)。

  (3)大膽猜測一下,三角形的內角和是多少度呢?

  【設計意圖】

  創(chuàng)設數學化的情境。學生用已經學的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣。

  二、探究新知

  有猜想就要有驗證,我們一起來探究用什么方法能知道三角形的內角和呢?

  1、確定研究范圍

  先請大家想一想,研究三角形的內角和,是不是應該包括所用的三角形?

  只研究你畫出的那一個三角形,行嗎?

  那就隨便畫,挨個研究吧?(太麻煩了)

  怎么辦?請你想個辦法吧。

  分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)

  2、探究三角形的內角和

  思考一下:你準備用什么方法探究三角形的內角和呢?

  小組合作:從你的學具袋中,任選一個三角形,來探究三角形的內角和是多少度?

  小組匯報:

  (1)量一量:把三角形三個內角的度數相加。

  直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的`方法?

  (2)拼一拼:把三角形的三個內角剪下來,拼成了一個平角。

  能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?

  (3)折一折:把三角形的三個角折下來,拼成了一個平角。

  這種方法真了不起,能借助平角的度數來推想三角形內角和是180°。

  總結:同學們動腦思考,動手操作,運用不同的方法來驗證三角形的內角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能借助學過的圖形,更科學更準確的來驗證三角形的內角和?

  3、演繹推理的方法。

  正方形四個角都是直角,正方形內角和是多少度?

  你能借助正方形創(chuàng)造出三角形嗎?(對角折)

  把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內角和:360°÷2=180°

  再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內角和:360°÷2=180°

  這種方法避免了在剪拼過程中操作出現的誤差,舉例驗證,你發(fā)現了什么?

  通過驗證,知道了直角三角形的內角和是180度。

  你能把銳角三角形變成直角三角形嗎?

  把銳角三角形沿高對折,分成了兩個直角三角形。

  一個直角三角形的內角和是180°,那么這個銳角三角形的內角和就是180°×2=360°了,對嗎?(360-180=180°)

  通過計算,我們知道了這個銳角三角形的內角和是180°,那么所有的銳角三角形的內角和都是180°嗎?你是怎么知道的?

  通過剛才的計算,你發(fā)現了什么?(銳角三角形內角和180°)

  鈍角三角形的內角和,你們會驗證嗎?誰來說說你的想法?180×2-90-90=180°

  通過驗證,你又發(fā)現了什么?(鈍角三角形內角和180°)

  4、總結

  通過分類驗證,我們發(fā)現:直角180,銳角180,鈍角180,也就是說:三角形的內角和是180°。也驗證了我們的猜想是正確的。(板書)

  5、想一想,下面三角形的內角和是多少度?(小--大)

  你有什么新發(fā)現?(三角形的內角和與它的大小,形狀沒有關系。)

  【設計意圖】

  為了滿足學生的探究欲望,發(fā)揮學生的主觀能動性,通過獨立探究和組內交流,實現對多種方法的體驗和感悟。學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結論更有價值。

  三、自主練習

  1、在一個三角形中,如果想求一個角的度數,至少得知道幾個角的度數呢?(2個)那我們就試一試,挑戰(zhàn)第一關。(兩道題)

  2、算得真快!如果只知道一個角的度數,還能求出未知角的度數嗎?挑戰(zhàn)第二關。(三道題)

  3、說得真清楚,如果一個角的度數也不知道,你還能求出未知角的度數嗎?挑戰(zhàn)第三關。(一道題)

  師:同學們真了不起,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,都能正確求出未知角的度數。

  4、學無止境,課下,請你利用三角形的內角和,探究一下四邊形、五邊形、六邊形的內角和各是多少度?

  【設計意圖】

  練習由淺入深,層層遞進。從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,梯度訓練,拓展思維。

  四、課堂總結

  同學們,回想一下,這節(jié)課我們學習了什么?通過這節(jié)課的學習,你有哪些收獲呢?

  真了不起,同學們不僅學到了知識,還掌握了學習的方法。"在數學的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節(jié)課上,重要的不是我們知道了三角形的內角和是180°,而是我們通過猜測,一步一步驗證,得到這個規(guī)律的過程。

  課后反思

  《三角形的內角和》是五四制青島版四年級上冊第四單元的信息窗二,本節(jié)課是在學生學習了與三角形有關的概念、邊、角之間的關系的基礎上,讓學生動手操作,通過一系列活動得出"三角形的內角和等于180°".

  本著"學貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設問題情境,讓學生去猜想、去探究、去發(fā)現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實三角形內角和是多少?大部分的學生已經知道了這一知識,所以很輕松地就可以答出。但是只是"知其然而不知其所以然".

  為此,我設計了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學生的注意力。使學生感受到每種活動的特點,這對他認識能力的提高是有幫助的。

  最后通過習題鞏固三角形內角和知識,培養(yǎng)學生思維的廣闊性,為了強化學生對這節(jié)課的掌握,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,層級練習,步步加深,梯度訓練。

  教學是遺憾的藝術。當然本節(jié)課的教學中,存在許多不盡如意之處:

  1、讓學生養(yǎng)成良好的學具運用習慣,特別是小組學生在合作操作時,應有效指導,對學生及時評價,激勵表揚,調動學生學習的積極性與主動性。

  2、學生在介紹剪拼的方法時,可以讓介紹的學生先上臺演示是如何把內角拼在一起,這樣學生在動手操作的時候就可以節(jié)省時間。

  3、在做練習時,為了趕時間,題出現的頻率較快,留給學生計算思考的時間不足,可能只照顧到好學生的進程,沒有關注全體學生,今后應注意這一點。

  教學是一門藝術,上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學中,只有勤學、多練,才能更好的為學生的學習和成長服務,讓自己的人生舞臺綻放光彩。

  《三角形的內角和》優(yōu)質教案 2

  教學目標:

  1、知識目標:通過測量、拼、折疊等方法探索和發(fā)現三角形的內角和等于180°;已知三角形兩個角的度數,會求出第三個角的度數。

  2、能力目標:通過討論爭辯、操作、推理等培養(yǎng)學生的思維能力和解決問題的能力;培養(yǎng)學生的空間觀念,使學生的創(chuàng)新能力得到發(fā)展;使學生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗證的研究問題的方法。

  3、情感目標:培養(yǎng)學生的合作精神和探索精神;培養(yǎng)學生運用數學的意識。

  教學重、難點:

  掌握三角形的內角和是180°。驗證三角形的內角和是180°。

  學生分析:

  在上學期學生已經掌握了角的分類及度量問題。在本課之前,學生又研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

  教學流程:

  一、創(chuàng)設情境,激發(fā)興趣

 。ㄕn件出示:兩個三角形爭論,大的對小的說,我的內角和比你大。)

  (學生小聲議論著,爭論著。)

  師:同學們,你們能不能幫助大三角形和小三角形解決這個問題?

  生:可以把這兩個三角形的內角比一比。

  生:它們不是一個角在比較,可怎么比呀?

  生:我們先畫出一個大三角形,再畫一個小三角形。分別量一量這兩個三角形三個內角的度數,這樣就知道誰的內角和大,誰的內角和小啦。

  師:那好,我們今天就來研究“三角形的內角和”。(板書課題。)

  【設計意圖:通過多媒體出示,引起學生興趣,使學生想探索大、小三角形的內角和到底誰大?】

  二、動手操作,探索新知

  1、初步感知。

  師讓學生分別畫出不同形狀的三角形。學生用量角器測量三角形三個內角的度數,并做著記錄,并統(tǒng)一填表格。(表格略。)

  生匯報測量的結果:內角和約等于180°。

  師啟發(fā)學生發(fā)現三角形的內角和180°。(師板書:三角形的內角和是180°。)

  【設計意圖:通過這種方法可以得出準確的結論,也容易被學生理解和接受?赡艹霈F問題:用測量的方法得到的結果不是剛好180°。使學生明白是因為測量存在誤差的緣故!

  2、用拼角法驗證。

  師:剛才同學們發(fā)現,三角形的內角和約等于180°,那么到底是不是這樣呢?

  生:我們手里有一些三角形,可以動手拼一拼。

  生:還可以剪一剪。

  師:那同學們就開始吧!

 。▽W生動手進行拼、剪、折等方法,檢驗三角形內角和的度數。)

  生:銳角三角形的內角可以拼成一個平角。因為平角是180°,所以銳角三角形的三個內角和是180°。

  生:我把一個直角三角形的三個內角剪下來,拼成了一個平角,所以直角三角形的三個內角和也是180°。

  生:鈍角三角形的內角和也是180°。

 。◣煱鍟喝切蔚膬冉呛褪180°。)

  【設計意圖:使學生明確,因為全面研究了直角三角形、銳角三角形和鈍角三角形這三類三角形的內角和,所以可以得出“三角形的內角和等于180°”這一結論。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要!

  三、鞏固新知,拓展應用

  1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數。

  2.已知∠1、∠2、∠3是三角形的三個內角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學生猜后,教師抽去遮蓋的紙,進行驗證。

  通過以上的練習使學生對三角形內角和的應用有個初步認識,并積累解決問題的經驗。

  3.師:(出示一個大三角形)它的內角和是多少度?

  生:180 °。

  師:(出示一個很小的三角形)它的內角和是多少度?

  生:180 °。

  師:(把大三角形平均分成兩份。指均分后的一個小三角形)它的內角和是多少度?(生有的答90°,有的答180°。)

  師:哪個對?為什么?

  生:180°對,因為它還是一個三角形。

  師:每個小三角形的度數是180°,那么這樣的兩個小三角形拼成一個大三角形,內角和是多少度?(這時學生的答案又出現了180°和360°兩種。)師:究竟誰對呢?(學生臉上露出疑問。經過一番激烈的討論探究后,學生開始舉手回答。)

  生:180°。因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內角和總是180°。

  生:我發(fā)現兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,比原來兩個三角形少180°,所以大三角形的`內角和還是180°,不是360°。

  師:你真聰明。(課件演示。)

  四、小結

  師:同學們,你們今天學了“三角形的內角和是180°”的新知識,現在能來幫助大、小三角形進行評判了吧?(生答能。)

  師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識?學會了哪些研究問題的方法?

  五、探究性作業(yè)

  求下面幾個多邊形的內角和。(圖形略。)

  【設計意圖:通過這樣的練習,培養(yǎng)學生思維的靈活性、多樣性,使不同層次的學生得到不同的發(fā)展,體現教學的層次性!

  反思:

  1、重視動手操作,讓學生在探究中收獲知識!稊祵W課程標準》指出:“有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式!北竟(jié)課通過量、折、剪、拼等多種活動,使學生主動探究,找到新舊知識的聯系,得出研究問題的結論,有利于學生培養(yǎng)空間觀念和動手操作能力。

  2、小組合作學習是新課程倡導的學習方式,有利于培養(yǎng)學生的合作意識、探索能力、團隊精神。我們要從平時抓起,在平常的課堂中開展小組合作學習,可以是前后四人為一組,深入探究合作學習的方法和途徑。這樣學生學習方式的轉變才能落到實處,才不會變成某些公開課的擺設

  《三角形的內角和》優(yōu)質教案 3

  教學內容

  人教版小學數學第八冊第五單元第85頁例5

  任務分析

  教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發(fā)現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想—驗證—結論的過程,來認識和體驗三角形內角和的特點。

  學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;并在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的度數并求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節(jié)課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

  教學目標

  1、通過實驗、操作、推理歸納出三角形內角和是180°。

  2、能運用三角形的內角和是180°這一規(guī)律,求三角形未知角的度數并運用解決實際生活問題。

  3、通過拼擺,感受數學的轉化思想。

  教學重點

  探究發(fā)現和驗證“三角形的內角和180度”。

  教學難點

  驗證三角形的內角和是180度。

  教學準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學過程

  一、復習舊知,學習鋪墊

  1、一個平角是多少度?等于幾個直角?

  2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規(guī)律

  1、說明三角形的三個內角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的度數和叫做三角形的內角和。

  板書課題:“三角形的內角和”。

  揭示課題:今天我們一起來探究三角形的內角和有什么規(guī)律。

  2、探究三角形的內角和規(guī)律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

  生討論匯報,并引導學生發(fā)現:三角形的內角和接近180°。

  師:三角形的內角和接近180°,那它到底與180° 有怎樣的`關系呢?

  學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

  生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°.

 。2)

  讓學生小組合作用同樣的方法,發(fā)現:直角三角形的內角和也是180°.

 。3)

  讓學生獨立用同樣的方法,發(fā)現:鈍角三角形的內角和也是180°.

  引導學生歸納:三角形的內角和是180°。

  是不是所有的三角形的內角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內角和是180°

  三、鞏固練習,應用規(guī)律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

  學生獨立完成,并說出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規(guī)律

  1、求出下面各角的度數。

 。1) (2)

  2、判斷

 。1)三角形任意兩個內角的和大于第三個角。( )

 。2)銳角三角形任意兩個內角的和大于直角。( )

 。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

 。 ) ( )

  五、課堂小結,分享提升

  1、談談這節(jié)課你有什么收獲?

  2、課后思考題

  三角形的內角和是180°,那長方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設計

  《三角形的內角和》優(yōu)質教案 4

  一、教材簡介:

  本微課選自北京師范大學出版社初中數學七年級下冊第四章《三角形》的第一節(jié)《認識三角形》的內容,學生在學習了“三角形的概念”之后,自然要想到“三角形的內角和”,因此本節(jié)微課起著承上啟下的作用。教學內容是《三角形內角和》。

  二、設計理念:

  我在設計這一堂微課時,主要從七年級學生以形象思維為主,對新事物容易產生興趣的特點出發(fā),創(chuàng)設問題情景“在以前小學學習三角形的內角和的結論時,是通過撕、拼的方法直觀得到的,你知道其中的依據嗎?”來激發(fā)學生探究的欲望。然后通過老師借助Z+Z超級畫板展示“三角形的內角和等于180°”的動畫以及通過旋轉和平移三角形的兩個角到第三個角的方法,一方面讓學生去發(fā)現問題,另一方面使學生通過多角度思考、分析、說理、操作加深學生對三角形內角和為180°的理解,從而突出和解決了本節(jié)課的重點,同時在教學中注重在直觀操作的基礎上進行簡單的推理,使學生學會用一定的方式有條理地表達推理過程。在學生探究得出三角形的內角和等于180°之后,教師通過借助Z+Z超級畫板拖動三角形的任意一個點,改變三角形的形狀,動態(tài)顯示了“三角形的內角和”始終等于180°的數據。加深對“三角形的內角和“的'理解。最后同過練習,檢測學生對“三角形的內角和”的應用掌握程度,拓展學生視野,提高學生認識水平。

  設計特色是力求通過Z+Z超級畫板動畫等多媒體教學手段,使抽象知識動態(tài)化,降低學生認知難度。以問題為導向,引導學生推斷分析,鍛煉學生邏輯思維。教學過程充分體現出以學生為主體,教師為主導的特點,啟發(fā)引導學生通過多角度思考、分析、說理、操作的過程中主動地去獲取知識,體驗過程、感悟方法,以提高學生學習的有效性。

  三、學情分析:

  七年級的學生形象思維比較好,但空間思維比較差,注意力容易轉移,需要教師結運用多媒體技術展示三角形內角和,因此本節(jié)課我展示“三角形的內角和”的動畫給學生看,將思維的可視化展示給學生,使學生能保持較大的學習興趣,從而努力培養(yǎng)學生的發(fā)現問題的能力、推理能力、有條理的表達能力、發(fā)展空間觀念。

  四、教學目標

  知識與技能:通過觀察、操作、想象、推理“三角形內角和等于180°”的活動過程,發(fā)展空間觀念,推理能力和有條理地表達能力。

  過程與方法:通過自主探究,結合具體實例,掌握三角形三個角和等于180°。

  情感、態(tài)度價值觀:在探究學習中體會數學的現實意義,培養(yǎng)學習數學的信心,體驗解決問題方法的多樣性。

  五、教學重難點

  教學重點:三角形的內角和。

  教學難點:三角形的內角和。

  六、教學用具

  “三角形的內角和”動畫、制作多媒體課件。

  七、教學過程:

  教學環(huán)節(jié)

  教學內容

  教學活動

  設計意圖

  教師的組織和引導

  學生活動

  提出問題,自主探究

  一、三角形內角和

  展示書本P81頁的做一做,提出問題:

  1、在小學通過撕、拼方法得到三角形內角和等于180°,依據是什么?

  2、展示“三角形內角和等于180°”動畫。

  3、引導學生利用“平行線的判定與性質”探究、推理、得出“三角形內角和等于180°”的結論

  3、利用“三角形內角和”的動畫,拖動三角形的任意點,用數據顯示三角形的內角和等于180°。

  閱讀課本p81頁,回憶小學通過撕、拼方法得到三角形內角和等于180°。

  觀看“三角形內角和等于180°”動畫。

  探究、想象、推理、得出結論。

  觀看動畫,加深理解三角形內角和等于180°。

  根據做一做,激發(fā)學生的探究欲望。

  動畫形象地呈現在學生眼前,直觀操作與說理結合起來。

  培養(yǎng)學生的推理能力和有條理地表達能力,發(fā)展空間觀念。

  效果檢測,引領提升

  練習

  展示有梯度的課堂練習。

  做練習

  對所學知識加以運用和深化歸納總結,深化認知

  總結拓展

  總結本節(jié)知識點

  歸納知識點

  學會總結

  板書設計

  一、三角形三個內角和等于180°

  教學反思:

  該微課針對我校生源不是很好的實際情況和“三角形內角和”很難理解的特點,面向學生,聚焦學習過程,關注個性差異,采用問題導學、自主探究模式,聚焦知識點講解,呈現教師如何用Z+Z超級畫板軟件引導學生學習,學生如何在教師的引導下自主學習的過程,充分體現教師的主導作用和學生的主體作用;針對七年級學生以形象思維為主、好奇心強的特點,充分發(fā)揮多媒體在學科中的運用,教師展示“三角形內角和”動畫,讓學生根據“平行線的判定和性質”獲得“三角形內角和等于180°”的結論,體現思維過程。培養(yǎng)學生的推理能力和有條理地表達能力,發(fā)展空間觀念。符合新課標倡導的探究性學習的理念。事實證明,符合學生的認知心理,達到了很好的效果。

  《三角形的內角和》優(yōu)質教案 5

  教學內容:

  課本第67頁。

  教學目標:

  通過操作活動探索發(fā)現和驗證“三角形的內角和是180度”的規(guī)律。

  通過量一量、剪一剪、拼一拼,培養(yǎng)學生合作能力、動手實踐能力和運用新知識解決問題的能力。

  使學生體驗數學學習的樂趣,激發(fā)學生主動學習數學的興趣。教學重點:探索發(fā)現和驗證三角形內角和是180度。教學難點:對不同探究方法的指導和學生對規(guī)律的應用。教學準備:課件,三角形,量角器。教學

  一、復習舊知,引出課題。誰能說說它們分別是什么三角形?

  預設:銳角三角形,直角三角形,鈍角三角形。

  請一位同學分別標出這些三角形的角,其余的同學在自己準備的三角形中標角。獨立完成,集體訂正。

  其實這些角是三角形的內角,誰能大膽猜一猜三角形內角和是多少度?預設:360°,180°,90°…….今天我們一起來探究三角形內角和。板書課題:三角形內角和

  二、探究新知

  1、小組合作。

  課件展示:活動要求(1)4人一組,每人任選一個三角形用你的方法驗證三角形內角和。

 。2)小組交流各自的驗證方法和驗證結果,評選出較好的驗證方法并說明理由。(3)每組選派一名同學匯報。

  預設:我們組選用的是量角法,依次測量出三角形內角和是170°,185°,180°…哪一組和這一組驗證方法不同?

  預設:我們是把三角形的3個角剪下來拼在一起發(fā)現得到一個平角因此得知三角形內角和是180°。

  你能把你拼的過程給大家說詳細一些嗎?

  預設:選出一個角,再選出一個角使得它的一邊與前一個角的一邊重合,剩下的角的一邊和前一個角的另一條邊重合,此時拼出一個平角因此三角形內角和是180°。

  我發(fā)現你選用的是銳角三角形,那直角三角形,鈍角三角形的內角和是怎樣的?請同學們嘗試用這種方法驗證三角形內角和。

  預設:直角三角形內角和是180°,鈍角三角形內角和是180°?偨Y:通過撕(剪)拼法,我們驗證任意三角形內角和是180°。

  追問:同學們我有一個困惑剛才有部分同學通過測量角計算內角和為什么不是180°,問題出在哪里?

  預設:測量角的方法不正確。預設:三角形做得不規(guī)范。

  預設:測量過程中存在誤差,導致不精確。

  總結:撕(剪)拼法在驗證三角形內角和精確性上優(yōu)勝于量角法。還有沒有同學想出不一樣的驗證方法呢?

  預設1:課件展示折拼法,請一位同學說出具體的操作過程。剩下的同學仿照這種方法任選一個三角形驗證三角形內角和。

  預設2:同學上臺展示操作過程,其余同學觀察后并自行操作。

  總結:

  折拼法依然能驗證任意三角形內角和是180°?磥斫鉀Q數學問題的方法不是唯一的,希望同學們在今后的學習當中能多思,多想充分挖掘自己的.聰明才智。

  三、知識運用,鞏固練習。

  請同學們獨立完成下題。(每題10分共100分。)

  1、如圖∠1=140°,∠3=25°,∠2=(°)。

  2、一個直角三角形,一個銳角是50°,另一個銳角是(°)。

  3、一個頂角是50°的等腰三角形的底角是(°)。

  4、等邊三角形每個角是(°)。

  5、等腰直角三角形的一個底角是(°)。

  6、在一個三角形中,∠A=90°,∠B+∠C=(°)。

  7、一個三角形中,有一個角是65°,另外的兩個角可能是(°)和(°)。

  8、某同學把一塊三角形的玻璃打碎成三片,現在他要到玻璃店去配一塊形狀完全一樣的玻璃,那么最省事的辦法是帶()去。為什么?

 、冖邰

  9、把下面這個三角形沿虛線剪成兩個三角形,每個小三角形的內角和是多少度?

  10、根據三角形內角和是180 °。你能求出下面四邊形的內角和嗎?

  四、課后小結

  請你談談本節(jié)課的收獲。

  五、板書設計

  任意三角形內角和是180°。

  《三角形的內角和》優(yōu)質教案 6

  教學要求

  1.通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

  2.能運用三角形的內角和是180°這一規(guī)律,求三角形中未知角的度數。

  3.培養(yǎng)學生動手動腦及分析推理能力。

  教學重點 三角形的內角和是180°的規(guī)律。

  教學難點 使學生理解三角形的內角和是180°這一規(guī)律。

  教學用具 每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、復習準備

  1.三角形按角的不同可以分成哪幾類?

  2.一個平角是多少度?1個平角等于幾個直角?

  3.如圖,已知∠1=35°,∠2=75°,求∠3的度數。

  二、教學新課

  1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

  2.三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的'內角和有什么規(guī)律。

  3.以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

  4.指名學生匯報各組度量和計算的結果。你有什么發(fā)現?

  5.大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6.剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

  提示學生,可以把三個內角拼成一個角,就只需測量一次了。

  7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8.三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

  9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現了什么?(直角三角形和鈍角三角形的內角和也是180°)

  10.那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11.老師板書結論:三角形的內角和是180°。

  12.一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

  13.出示教材85頁做一做。讓學生試做。

  14.指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°-140°-25°=15°

  ∠2=180°(140°+25°)=15°

  三、鞏固練習

  1.88頁第9題

  這一題是不是只知道一個角的度數?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。

  直角三角形中的一個銳角還可以怎樣算?

  2、88頁第10題

 、俚妊切斡惺裁刺攸c?(兩底角相等)

 、诹惺接嬎 180°-70°-70°=40°或

  180°-(70°×2)=40°

  2.88頁第10題

 、龠B接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?

  ②一個三角形的內角和是180°,兩個三角形呢?

  四、布置作業(yè)

  《三角形的內角和》優(yōu)質教案 7

 。ㄒ唬┙滩牡牡匚缓妥饔

  《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規(guī)律具有重要意義。

  (二)教學目標

  基于以上對教材的分析以及對教學現狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

  1。通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發(fā)現驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。

  2。通過把三角形的內角和轉化為平角進行探究實驗,滲透"轉化"的數學思想。

  3。通過數學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。

 。ㄈ┙虒W重,難點

  因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是"內角"的概念,如何驗證得出三角形的內角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內角和是180°。

  二、說教法,學法

  本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。

  因為《課程標準》明確指出:"要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力"。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從"猜測――驗證"展開學習活動,讓學生感受這種重要的數學思維方式。

  三,說教學過程

  我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。

  引入

  呈現情境:出示多個已學的平面圖形,讓學生認識什么是"內角"。( 把圖形中相鄰兩邊的夾角稱為內角) 長方形有幾個內角 (四個)它的內角有什么特點 (都是直角)這四個內角的和是多少 (360°)三角形有幾個內角呢 從而引入課題。

  【設計意圖】

  讓學生整體感知三角形內角和的知識,這樣的教學, 將三角形內角和置于平面圖形內角和的大背景中, 拓展了三角形內角和的數學知識背景, 滲透數學知識之間的聯系, 有效地避免了新知識的"橫空出現"。

  猜測

  提出問題:長方形內角和是360°,那么三角形內角和是多少呢

  【設計意圖】

  引導學生提出合理猜測:三角形的內角和是180°。

 。ㄈ炞C

  (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內角的度數加起來算一算,看看得出的三角形的內角和是多少度

 。2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

 。3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

 。4)畫:根據長方形的內角和來驗證三角形內角和是180°。

  一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。

  【設計意圖】

  利用已經學過的知識構建新的數學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內角和規(guī)律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯系起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯系。在整個探索過程中, 學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

  深化

  質疑: 大小不同的三角形, 它們的內角和會是一樣嗎

  觀察:(指著黑板上兩個大小不同但三個角對應相等的'三角形并說明原因,三角形變大了, 但角的大小沒有變。)

  結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。

  實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

  結論:活動角就是一個平角180°, 另外兩個角都是0°。

  【設計意圖】

  小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯系起來,通過讓學生觀察利用"角的大小與邊的長短無關"的舊知識來理解說明。

  對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯系和變化, 感悟三角形內角和不變的原因。

  (五)應用

  1;A練習:書本練習十四的習題9,求出三角形各個角的度數。

  2。變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎

  3。(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內角和是多少

 。2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內角和分別是多少

  4。智力大挑戰(zhàn): 你能求出下面圖形的內角和嗎 書本練習十四的習題

  【設計意圖】

  習題是溝通知識聯系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內在聯系, 使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

  第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。

  第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯系。

  第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的 變化情況, 進一步理解三角形內角和的知識。

  第四題是對三角形內角和知識的進一步拓展, 引導學生進一步研究多邊形的內角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內角和與三角形內角和聯系起來,并逐步發(fā)現多邊形內角和的規(guī)律, 以此促進學生對多邊形內角和知識的整體構建。

  《三角形的內角和》優(yōu)質教案 8

  本節(jié)微課視頻是蘇教版數學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎!度切蔚膬冉呛汀肥侨切蔚囊粋重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數,知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。

  下面就具體談談微課的`教學設計:

  一、 教學目標

  1、通過測量、轉化、觀察和比較等活動探索發(fā)現并驗證“三角形的內角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數等實際問題。

  2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的聯想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。

  3、使學生通過操作的過程獲得發(fā)現規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數學的興趣。

  二、 教學重點和難點

  重點:讓學生親自驗證并總結出三角形的內角和是180度的結論

  難點:對不同驗證方法的理解和掌握。

  三、 教學過程

 。ㄒ唬┵|疑——發(fā)現問題,提出問題

  出示學生熟悉的一副三角尺,讓學生說說每塊三角尺中各個內角的度數。試著計算每塊三角尺的三個內角的度數加起來的和是多少度?

  交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?

  引導學生得出三角尺的三個內角的度數和是180度。

  提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)

  你有什么辦法驗證這一結論呢?(動手操作,尋找答案)

  方法一:拿出不同的直角三角形,分別測量三個內角的度數,再求和。(提示存在誤差,但三個內角的和都在180度左右)

  方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。

  啟發(fā):直角三角形的內角和是180度,這一結論讓你聯想到了什么?你能提出什么新的數學問題呢?

  引導:從直角三角形的內角和聯想到所有三角形的內角和,提出問題:所有三角形的內角和都是180度嗎?

  (二)探究——分析問題,解決問題

  出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

  引導:直角三角形的內角和是180度了,由此我們聯想到銳角三角形和鈍角三角形的內角和也有可能是180度。

  提問:你有什么辦法來驗證這一猜想呢?

  拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現規(guī)律。

  方法一:可以像上面那樣先測量每個三角形的三個內角的度數,再計算出它們的和,看看能發(fā)現什么規(guī)律。學生測量計算,教師巡視指導。

  引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現其中的規(guī)律。

  方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發(fā)現拼成了一個平角,是180度。

  方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發(fā)現拼成一個平角,是180度。

  方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。

 。ㄈw納——獲得結論

  交流:回顧以上3個三角形的內角和的探索過程,你發(fā)現了什么規(guī)律?

  總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。

 。ㄋ模┩卣埂柟叹毩

  1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?

  2、在一個三角形中,根據兩個內角的度數,求第三個內角的度數?

  《三角形的內角和》優(yōu)質教案 9

  教學目標

  通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發(fā)學生探索數學規(guī)律的興趣,初步感知計算多邊形內角和的公式。

  教學重難點

  三角形的內角和

  課前準備

  電腦課件、學具卡片

  教學活動

  一、計算三角尺三個內角的和。

  出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

  引導學生說出90度、60度、30度。

  出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。

  提問:請同學們任選一個三角尺,算出他們三個角一共多少度?

  學生計算后指名回答。

  師:三角尺三個角的和是180度。

  二、自主探索,解決問題

  提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上

  任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。

  學生小組活動,教師了解學生情況,個別同學加以輔導。

  全班交流:讓學生分別說出三個角的度數以及它們的和。

  提問:你發(fā)現了什么?

 。喝魏我粋三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。

  三、試一試

  要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。

  教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以

  計算的結果為準。

  四、鞏固提高

  完成想想做做的題目。

  第1題

  學生獨立計算,交流算法。要求學生用量角器量出結果,和計算的結果想比較。

  第2題

  指導學生看圖,弄清拼成的三角形的三個內角指的是哪三個角。計算三角形三個角的`內角和,幫助學生進一步理解:三角形三個內角的和是180度。

  第3題

  通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內角和是不會變化的。

  第4、5、6

  引導學生運用三角形的分類及三角形內角和的有關知識解決有關問題,重點培養(yǎng)學生靈活運用知識解決問題的能力。

  《三角形的內角和》優(yōu)質教案 10

  教學內容:

  人教版義務教育課程標準試驗教科書數學四年級下冊第67頁。

  設計理念:

  遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對于學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。

  教材分析:

  三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現、討論交流、推理歸納出三角形的內角和是180。

  學情分析:

  學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的'知識,大多數學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節(jié)課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。

  教學目標:

  1. 使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規(guī)律解決一些簡單的問題。

  2. 使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數學思考能力。

  3. 使學生在參與數學學習活動的過程中,獲得成功的體驗,感受探索數學規(guī)律的樂趣,產生喜歡數學的積極情感,培養(yǎng)積極與他人合作的意識

  《三角形的內角和》優(yōu)質教案 11

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現三角形內角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經歷猜測探索總結的數學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內角和的性質解決一些簡單的問題,使學生體會數學與現實生活的聯系,體會到數學的價值,增加學生學數學的信心和興趣。

  教學重點:

  探索發(fā)現三角形內角和等于180并能應用。

  教學難點:

  三角形內角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內角和是180),你有什么疑惑? 生:什么是內角?

  生:每個三角形的內角和都是180嗎?

 。ǜ鶕䦟W生的問題,在三角形的內角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內角 師:什么是內角?

  生:我認為三角形的內角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內角,每個三角形都有三個內角。

  2、理解內角和。

  師:那三角形的內角和又是指什么?

  生:我認為三角形的內角和就是把三角形的三個內角的度數加起來的和。

  師:為了方便,我們將三角形的每個內角編上序號1、2、3、我們叫它1、2、3,這三個角的度數和,就是這個三角形的內角和。

  3、實踐驗證

  師:每個三角形的內角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數,然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內角的度數分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內角的度數分別是45、45、90,加起來一共是180。

  師:這是我們三角尺中的一個,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內角的度數分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內角的度數分別是85、60、38,加起來一共是183。

  師:你發(fā)現了什么?

  生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。

  師:看來三角形的內角和不一定是180。

  生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

 。▽W生在小組內進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內角都向內折,三個內角就拼成了一個平角,也就是180,所以我們小組得出三角形的內角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的'內角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180。 師:你們小組很聰明,從長方形的內角和聯想到直角三角形的內角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內角和是1800。

  三、鞏固應用,加深理解

  1、說一說每個三角形的內角和是多少度

  師:(出示一個大三角形)這個大三角形的內角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內角和是多少度?

  生:180

  師:為什么每個三角形的內角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內角和是多少度?

  生:180

  2、求下面各角的度數

  師:如果老師告訴你一個三角形的兩個角的度數,你能說出第三個角的度數嗎?

 。ǔ觯

  生:三角形內角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋在建筑中應用的例子。

  在設計這座大橋時,如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現在知道為什么一個三角形內只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數之和是180,再加上一個角,三個角的度數之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

  《三角形的內角和》優(yōu)質教案 12

  探索與發(fā)現:三角形內角和

  課型

  新授課

  設計說明

  本節(jié)課是在學生已經掌握了鈍角、銳角、直角、平角及三角形分類的基礎上,讓學生通過直觀操作來認識和學習的。

  1.重視知識的探究與發(fā)現。

  在教學中,概念的形成沒有直接給出,而是整節(jié)課都是在引導學生的實驗操作、活動探究中進行。在探究活動中,不但重視知識的形成過程,而且注意留給學生充分進行主動探究和交流的空間,讓學生歸納出三角形內角和等于180°。

  2.重視學生的合作探究學習。

  使學生能夠積極主動地參與到數學活動中,能在實踐中感知、發(fā)表自己的見解,學生感受到通過自己的努力取得成功所帶來的滿足感,同時也培養(yǎng)了學生的探究能力和創(chuàng)新能力。

  課前準備

  教師準備:PPT課件 量角器 直尺 三角尺

  學生準備:量角器 三角尺

  教學過程

  一、常識導入。(3分鐘)

  1.介紹帕斯卡:早在300多年前有一個科學家,他在12歲時驗證了任意三角形的內角和都是180°,他就是法國科學家、物理學家帕斯卡。

  2.導入新課:這節(jié)課我們也來驗證一下三角形的內角和。

  1.傾聽教師的介紹,了解帕斯卡。

  2.明確本節(jié)課的學習內容。

  1.填空。

  (1)有一個角是鈍角的三角形是( )三角形;有一個角是直角的三角形是( )三角形;三個角都是銳角的三角形是( )三角形。

  (2)平角=( )°

  直角=( )°

  周角=( )°

  二、合作交流,探究新知。(18分鐘)

  (一)量算法。

  1.探究特殊三角形的內角和。

  (1)出示一副三角尺,引導學生說一說各個角的度數。

  (2)引導學生算一算它們的內角和各是多少度。

  (3)引導學生得出結論。

  2.探究一般三角形的內角和。

  (1)引導學生猜一猜其他三角形的內角和是多少度。

  (2)組織學生驗證一般三角形的內角和是180°。

  ①引導學生量出每個內角的度數,再計算三個內角的和。

  ②引導學生分工合作,把結果填入記錄表中。

  ③引導學生說說自己的發(fā)現。

  (3)引導學生明確由于測量有誤差,實際上三角形的內角和是180°。

  (二)剪拼法。

  1.組織學生用剪拼的方法求三角形的內角和。

  2.引導學生總結發(fā)現。

  3.課件演示,得出三角形的內角和是180°的結論。

  (三)折拼法。

  1.引導學生結合剪拼法嘗試折拼法。

  2.引導學生得出結論。

  3.課件演示折拼法。

  (一)1.(1)說出每個三角尺中各個角的度數。

 、90°;60°;30°。

  ②90°;45°;45°。

  (2)獨立算出每個三角尺的內角和。

  (3)得出結論:這兩個三角尺的內角和都是180°。

  2.(1)同桌之間互相說說自己的'看法。

  猜測:一種是內角和可能是180°,另一種是內角和一定是180°。

  (2)小組合作進行探究,量一量,算一算,說一說。

  通過觀察發(fā)現:三角形的內角和都在180°左右。

  (3)聽老師講解,明確三角形的內角和是180°。

  (二)1.把一個三角形的三個內角剪下來,小組內拼合。在拼合過程中要注意:頂點重合,三個角拼合。

  2.發(fā)現三角形的三個內角正好拼成了一個平角,也就是180°。

  3.觀看課件演示,明確三角形的三個內角拼成了一個平角,所以它的內角和是180°。

  (三)1.動手折一折、拼一拼。

  2.得出結論:三角形的三個內角拼在一起正好是一個平角,所以三角形的內角和是180°。

  3.觀看課件演示,再次明確三角形的內角和是180°。

  2.算一算。

  在一個直角三角形中,已知一個銳角是35°,另一個銳角是多少度?

  3.在能組成三角形的三個角的后面畫“√”。

  (1)90°;20°;70°。 ( )

  (2)100°;50°;50°。( )

  (3)70°;70°;70°。( )

  (4)80°;70°;30°。( )

  4.猜一猜。

  有一個三角形,其中一個角是20°,它可能是什么三角形?

  5.已知∠1、∠2、∠3是三角形的三個內角,請你計算出每個三角形中∠1的度數。

  (1)∠2=58° ∠3=48°

  (2)∠2=∠3=70°

  (3)∠1=∠2=∠3

  三、鞏固練習。(16分鐘)

  把正確答案的序號填在括號里。

  1.把兩個小三角形合成一個大三角形,這個大三角形的內角和是( )。

  A.90° B.180° C.360°

  2.一個三角形中有兩個銳角,則第三個角( )。

  A.也是銳角

  B.一定是直角

  C.一定是鈍角

  D.無法確定

  小組合作,選一選,明確答案。

  1.明確任何一個三角形的內角和都是180°,三角形的內角和與三角形的大小無關。

  2.通過討論,明確任何一個三角形都至少有兩個銳角,所以無法確定。

  6.如下圖,在直角三角形中,已知∠2=30°,不計算,你知道∠1的度數嗎?

  四、課堂總結,拓展延伸。(3分鐘)

  1.總結本節(jié)課的學習內容。

  2.布置課后作業(yè)。

  談自己本節(jié)課的收獲。

  《三角形的內角和》優(yōu)質教案 13

  一、教材分析:

  教材創(chuàng)設了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應使學生明確“內角”的意義,然后引導學生探索三角形內角和等于多少。大多數學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內角的度數,并求出它們的和,填寫在教材提供的表中。最后發(fā)現,大小、形狀不同的三角形,每一個三角形內角和都在180°左右。三角形的內角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內角撕下來,再拼在一起,組成一個平角,因此三角形內角和是180度。二是把三個內角折疊在一起,發(fā)現也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內角和的認識,體驗三角形內角和性質的探索過程。

  二、學生狀況分析:

  學生在本課學習前已經認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經知道了兩塊三角尺上的每一個角的度數,學生課上對數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題的策略多樣化。

  三、學習目標:

  1.通過測量、撕拼、折疊等方法,探索和發(fā)現三角形三個內角的和等于180°。

  2.知道三角形兩個角的度數,能求出第三個角的度數。

  3.發(fā)展學生動手操作、觀察比較和抽象概括的能力。體驗數學活動的探索樂趣,體會研究數學問題的思想方法。

  4.能應用三角形內角和的性質解決一些簡單的問題。

  四、教具、學具準備:

  課件、6張三角形的紙、學生準備任意三角形。

  五、教學過程:

 。ㄒ唬┰O疑導入(2分鐘)

  師:在平的數學學習中,我們經常會使用一種工具——三角尺。(課件出示兩個三角尺)每個三角尺里都有三個角,我們把它叫內角。(板書內角)為了方便老師分別給兩個三角尺的內角編上號,誰能告訴我它們分別是多少度?

  師:請同學們仔細觀察比較一下,這兩個三角形有什么共同之處?

  生:它們的內角和都是180°。

  師:你是怎么得出180°的?

  生:30°+60°+90°=180°

  師:那第二個呢?

  生:45°+45°+90°=180°

  師:同學們,通過剛才的算一算,我們得到這兩個直角三角形的內角和都是180°,由此你想到什么呢?(這兩個直角三角形的內角和都是180°,那其他的三角形呢?)

  生A:其他三角形的內角和也是180°

 。ǘ﹦邮植僮鳎骄繂栴},以動啟思(20分鐘)

  1、師:這只是我們的一種猜測,三角形的內角和是否真的等于180°,還需要我們去驗證。接下來,我們就來驗證三角形的內角和,老師為大家準備了1號——6號6個三角形,下面請每個同學選擇一個三角形來驗證。想一想,你準備用什么樣的方法來驗證三角形的內角和,然后開始驗證。

 。1)小組合作,討論驗證方法

 。2)匯報驗證方法、結果

  現在我們一起交流一下驗證的結果,交流的時候,你先介紹一下驗證的是幾號三角形,然后說一說是什么三角形,最后說一說內角和是多少。

  師:同學們我、其實剛才我在驗證的時候很多同學有的還是量一量的方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準確、簡便的方法來驗證。

  師:好,請同學們觀察大屏幕,這些三角形的內角和都是180°,那么請問,現在我們能不能以下結論:所以的三角形的內角和都是180°呢?

  生:可以

  師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們在科學研究的道路上就要敢于質疑的精神,接下來我們怎么辦?(我們應該在找一些三角形驗證)這個建議非常好,找一些任意三角形這樣才有說服力。

  師:每個同學都準備的三角形帶了嗎?下面就請同學來驗證你們自己帶來的三角形的內角和究竟是多少度。學生匯報交流。

  同學們我們這樣驗證,驗證完嗎?(驗證不完)

  師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準備的三角形這些直角、銳角、鈍角三角形的內角和都是180°,那么我們可以概括成什么呢?

  生:我們發(fā)現每個三角形的三個內角和都是180°。

  課件出示結論:三角形的內角和是180°)。

  師:看來我們的猜測是正確的,現在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現:“三角形的內角和是1800”。(板書:三角形的內角和是1800

 。ㄋ模╈柟叹毩暎海15分鐘)

  學會了知識,我們就要懂得去運用。下面,我們就根據三角形內角和的知識來解決一些相關的數學問題。(課件)

  師:一塊三角尺的內角和180°,兩塊同樣的三角尺拼成的一個大三角形的.內角和又是多少呢?

  師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內角和是多少度?(生有的答90 °,有的180 °。)

  師:哪個對?為什么?

  生:180°,因為它還是一個三角形。

  師:每個小三角形的度數是180°,那么這樣的兩個小三角形拼成一個大三角形,內角和是多少度?這時學生的答案又出現了180°和360°兩種。

  師:究竟誰對呢?大家可以在小組內拼一拼,進行討論

  生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內角和總是180°。

  生2:我發(fā)現兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內角和還是180°,不是360°。

  師:三角形不論位置、大小、形狀如何,它的內角和總是180°

  1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?

  教師引導學生復習等腰三角形的特征,再讓學生談談想法。

  教師匯總解法:

  180度-50度=130度130度÷2度=65度

  知識拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學生自主完成匯報結果)教師匯總解法:

  50度×2=100度180度-100度=80度

  2、一個直角三角形,一個銳角為35度,求另一個銳角的度數。

  教師帶領學生復習直角三角形的特征。(指名匯報)解法不唯一,只要學生思路正確老師應及時給與肯定。教師匯總解法:

  (1)180度-90度=90度90度-35度=55度

  (2)180度-35度=145度145度-90度=55度

  (3)90度+35度=125度180度-125度=55度

  (4)90度-35度=55度

  3、下面的說法對嗎?

  1)鈍角三角形的兩個銳角之和大于90度。()

  2)大三角形的內角和比小三角形的內角和大。()

  3)一個直角三角形中最多有一個直角。()

  學生自主理解題意,教師引導學生說出對或錯的原因。

  4、老師這還有一個難題需要解決,同學們愿意接受挑戰(zhàn)嗎?

  師:老師手里有一個信封,信封里露出一來個角,這個角的度數是45度,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?

  師:信封里還露出一來個角,這個角的度數是45度,它是這個三角形內角中最小的銳角,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?

  5、想一想,下面圖形的內角和分別是多少?

  學生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報,指名板演。

  (五)課堂小結

  師:一節(jié)課快要結束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?

  《三角形的內角和》優(yōu)質教案 14

尊敬的各位評委老師:

  大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學生的基礎上,我準備從以下幾個方面進行說課:

  一、教材分析

  “三角形的內角和”是三角形的一個重要性質,它有助于學生理解三角形內角之間的關系,是進一步學習幾何的基礎。

  二、教學目標

  1、知識與技能:明確三角形的內角的概念,使學生自主探究發(fā)現三角形內角和等于180°,并運用這一規(guī)律解決問題。

  2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養(yǎng)學生發(fā)現問題、提出問題、分析問題和解決問題的能力。

  3、情感與態(tài)度:使學生感受數學圖形之美及轉化思想,體驗數學就在我們身邊。

  三、教學重難點

  教學重點:動手操作、自主探究發(fā)現三角形的內角和是180°,并能進行簡單的運用。

  教學難點:采用多種途徑驗證三角形的內角和是180°。

  四、學情分析

  通過前面的學習,學生已經掌握了三角形的一些基礎知識,會量角,部分學生已經知道三角形內角和是180°,但不知道怎樣得出這個結論。

  五、教學法分析

  本節(jié)課采用自主探索、合作交流的教學方法,學生自主參與知識的構建。領悟轉化思想在解決問題中的應用。

  六、課前準備

  1、教師準備:多媒體課件、三角形教具。

  2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

  七、教學過程

 。ㄒ唬、創(chuàng)設情境,激趣導入

  導入:“同學們,有三位老朋友已經恭候我們多時了!埃ǔ鍪救切蝿赢嬚n件),讓學生依次說出各是什么三角形。

  課件分別閃爍三角形三個內角,并介紹:“這三個角叫做三角形的內角,把三個角的度數加起來,就是三角形的內角和。請學生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內角和。板書課題。

 。ǘ、自主探究、合作交流

  1、探索特殊三角形內角和

  拿出自己的一副三角板,同桌之間互相說一說各個角的度數。

  三角形內角和是多少度呢?指名匯報。90°+30°+60°=180°

  90°+45°+45°=180°

  從剛才兩個三角形內角和的計算中,你發(fā)現了什么?

  2、探索一般三角形的內角和

  一般三角形的內角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

  3、匯報交流

  請小組代表匯報方法。

  1)量:你測量的三個內角分別是多少度?和呢?(有不同意見)

  沒有統(tǒng)一的結果,有沒有其他方法?

  2)剪―拼:把三角形的三個內角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結論。(學生嘗試驗證)

  3)折拼:學生邊演示邊匯報。把三角形的三個內角都向內折,把這三個內角拼組成一個平角。所以得出三角形的內角和是180°。(學生嘗試驗證)

  4)教師課件驗證結果。

  請看屏幕,老師也來驗證一下,是不是和你們的結果一樣?播放課件。我們可以得到一個怎樣的結論?

  學生回答后教師板書:三角形的內角和是180°

  為什么有的小組用測量的方法不能得到180°?(誤差)

  4、驗證深化

  質疑:大小不同的三角形,它們的'內角和會是一樣嗎?(一樣)

  誰能說一說不能畫出有兩個直角的三角形的原因?

 。ㄈ、應用規(guī)律,解決問題:

  揭示規(guī)律后,學生要掌握知識,就要通過解答實際問題。

  1、為了讓學生積極參與,我設計了闖關的活動來激勵學生的興趣。闖關成功會獲得小獎章。

  第一關:基礎練習,要求學生利用“三角形內角和是180°”這一規(guī)律在三角形內已知兩個角,求第三個角(課件出示)

  第二關,提高練習,①已知等腰三角形的底角,求頂角。②求等邊三角形每個角的度數是多少。直角三角形已知一個銳角,求另一個。

  讓學生靈活應用隱含條件來解決問題,進一步提高能力。

  2、小組合作練習,完成相應做一做。

 。ㄋ模、課堂總結,效果檢測。

  一節(jié)成功的好課要有一個好的開頭,更要有一個完美的結尾,數學是使人變聰明的學科,通過這節(jié)課的學習,你收獲了什么?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

 。ㄎ澹┳鳂I(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現。

  八、板書設計

  通過這樣的設計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發(fā)現,在發(fā)現中成長。以上便是我對《三角形的內角和》這一堂課的說課,謝謝大家!

  《三角形的內角和》優(yōu)質教案 15

  教學內容:

  p.28、29

  教材簡析:

  本節(jié)課的教學先通過計算三角尺的3個內角的度數的和,激發(fā)學生的好奇心,進而引發(fā)三角形內角和是180度的猜想,再通過組織操作活動驗證猜想,得出結論。

  教學目標:

  1、讓學生通過觀察、操作、比較、歸納,發(fā)現三角形的內角和是180。

  2、讓學生學會根據三角形的內角和是180 這一知識求三角形中一個未知角的度數。

  3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

  教學準備:

  三角板,量角器、點子圖、自制的三種三角形紙片等。

  教學過程:

  一、提出猜想

  老師取一塊三角板,讓學生分別說說這三個角的度數,再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180

  看了這2個算式你有什么猜想?

 。ㄈ切蔚娜齻角加起來等于180度)

  二、驗證猜想

  1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數,再把三個角的度數相加。

  老師注意巡視和指導。交流各自加得的結果,說說你的發(fā)現。

  2、折、拼:學生用自己事先剪好的圖形,折一折。

  指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現:三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。

  繼續(xù)用該方法折鈍角三角形,得到同樣的結果。

  直角三角形的折法有不同嗎?

  通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的'方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數和也是180度。

  3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。

  在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。

  小結:我們可以用多種方法,得到同樣的結果:三角形的內角和是180。

  4、試一試

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,結果相同嗎?

  三、完成想想做做

  1、算出下面每個三角形中未知角的度數。

  在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

  指出:在計算的時候,我們可根據具體的數據選擇更佳的算法。

  2、一塊三角尺的內角和是180 ,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內角和是多少度?

  可先猜想:兩個三角形拼在一起,會不會它的內角和變成1802=360 呢?為什么?

  然后再分別算一算圖上的這三個三角形的內角和。得出結論:三角形不論大小,它的內角和都是180 。

  3、用一張正方形紙折一折,填一填。

  4、說理:一個直角三角形中最多有幾個直角?為什么?

  一個鈍角三角形中最多有幾個直角?為什么?

  四、布置作業(yè)

  第4、5題

【《三角形的內角和》優(yōu)質教案】相關文章:

三角形內角和教案02-19

教案:《三角形的內角和》04-25

三角形的內角和教案06-13

教案及反思:三角形的內角和04-25

《三角形內角和》04-26

三角形的內角和04-26

三角形內角和教案15篇02-20

《三角形內角和》數學教案03-26

【精選】三角形內角和教案四篇05-15