三角形內(nèi)角和教案集合八篇
作為一名優(yōu)秀的教育工作者,就有可能用到教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。怎樣寫教案才更能起到其作用呢?下面是小編為大家整理的三角形內(nèi)角和教案8篇,歡迎大家借鑒與參考,希望對大家有所幫助。
三角形內(nèi)角和教案 篇1
學(xué)習(xí)目標(biāo):
(1) 知識與技能 :
掌握三角形內(nèi)角和定理的證明過程,并能根據(jù)這個(gè)定理解決實(shí)際問題。
(2) 過程與方法 :
通過學(xué)生猜想動(dòng)手實(shí)驗(yàn),互相交流,師生合作等活動(dòng)探索三角形內(nèi)角和為180度,發(fā)展學(xué)生的推理能力和語言表達(dá)能力。對比過去撕紙等探索過程,體會思維實(shí)驗(yàn)和符號化的理性作用。逐漸由實(shí)驗(yàn)過渡到論證。
通過一題多解、一題多變等,初步體會思維的多向性,引導(dǎo)學(xué)生的個(gè)性化發(fā)展。
(3)情感態(tài)度與價(jià)值觀:
通過猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生的'學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生主動(dòng)探索,敢于實(shí)驗(yàn),勇于發(fā)現(xiàn),合作交流。
一.自主預(yù)習(xí)
二.回顧課本
1、三角形的內(nèi)角和是多少度?你是怎樣知道的?
2、那么如何證明此命題是真命題呢?你能用學(xué)過的知識說一說這一結(jié)論的證明思路嗎?你能用比較簡潔的語言寫出這一證明過程嗎?與同伴進(jìn)行交流。
3、回憶證明一個(gè)命題的步驟
①畫圖
、诜治雒}的題設(shè)和結(jié)論,寫出已知求證,把文字語言轉(zhuǎn)化為幾何語言。
、鄯治、探究證明方法。
4、要證三角形三個(gè)內(nèi)角和是180,觀察圖形,三個(gè)角間沒什么關(guān)系,能不能象前面那樣,把這三個(gè)角拼在一起呢?拼成什么樣的角呢?
①平角,②兩平行線間的同旁內(nèi)角。
5、要把三角形三個(gè)內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。如何把三個(gè)角轉(zhuǎn)化為平角或兩平行線間的同旁內(nèi)角呢?
、 如圖1,延長BC得到一平角BCD,然后以CA為一邊,在△ABC的外部畫A。
、 如圖1,延長BC,過C作CE∥AB
③ 如圖2,過A作DE∥AB
、 如圖3,在BC邊上任取一點(diǎn)P,作PR∥AB,PQ∥AC。
三、鞏固練習(xí)
四、學(xué)習(xí)小結(jié):
(回顧一下這一節(jié)所學(xué)的,看看你學(xué)會了嗎?)
五、達(dá)標(biāo)檢測:
略
六、布置作業(yè)
三角形內(nèi)角和教案 篇2
一、學(xué)生知識狀況分析
學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線的性質(zhì)及嚴(yán)格的證明等知識的基礎(chǔ)上展開的,因此,學(xué)生具有良好的基礎(chǔ)。
活動(dòng)經(jīng)驗(yàn)基礎(chǔ): 本節(jié)課主要采取的 活動(dòng)形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動(dòng)經(jīng)驗(yàn).
二、教學(xué)任務(wù)分析
上一節(jié)課的學(xué)習(xí)中,學(xué)生對于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識,形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的相關(guān)知識來推導(dǎo)出新的定理以及靈活運(yùn)用新的定理解決相關(guān)問題。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識與技能:(1)掌握三角形內(nèi)角和定理的證明及簡單應(yīng)用。
(2)靈活運(yùn)用三角形內(nèi)角和定理解決相關(guān)問題。
數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。
情感與態(tài)度:對比過去撕紙等探索過程,體會思維實(shí)驗(yàn)和符號化 的理性作用.
三、教學(xué)過程分析
本節(jié)課的設(shè)計(jì)分為四個(gè)環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)
第一環(huán)節(jié):情境引入
活動(dòng)內(nèi)容:(1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.
實(shí)驗(yàn)1:先將紙片三角形一角折向其對邊,使頂點(diǎn)落在對邊上,折線與對邊平行(圖6-38(1))然后把另外兩角相向?qū)φ,使其頂點(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果
(1) (2) (3) (4)
試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?
(2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。
試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個(gè)角呢?
活動(dòng)目的:
對比過去撕紙等探索過程,體會思維實(shí)驗(yàn)和符號化的理性作用。將自己的操作轉(zhuǎn)化為符號語言對于學(xué)生來說還存在一定困難,因此需要一個(gè)臺階,使學(xué)生逐步過渡到嚴(yán)格的'證明.
教學(xué)效果:
說理過程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說出用撕紙的方法可以驗(yàn)證三角形內(nèi)角和定理的原因。
第二環(huán)節(jié):探索新知
活動(dòng)內(nèi)容:
、 用嚴(yán)謹(jǐn)?shù)淖C明來論證三角形內(nèi) 角和定理.
、 看哪個(gè)同學(xué)想的方法最多?
方法一:過A點(diǎn)作DE∥BC
∵DE∥BC
DAB=B,EAC=C(兩直線平行,內(nèi)錯(cuò)角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代換)
方法二:作BC的延長線CD,過點(diǎn)C作射線CE∥BA.
∵CE∥BA
ECD(兩直線平行,同位角相等)
ACE(兩直線平行,內(nèi)錯(cuò)角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代換)
活動(dòng)目的:
用平行線的判定定理及性質(zhì)定理來推導(dǎo)出新的定理,讓學(xué)生再次體會幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。
教學(xué)效果:
添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到 證明的目的.
第三環(huán)節(jié):反饋練習(xí)
活動(dòng)內(nèi)容:
(1)△ABC中可以有3個(gè)銳角嗎? 3個(gè)直角呢? 2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,則△ABC中B=?
(4)三角形的三個(gè)內(nèi)角中,只能有____個(gè)直角或____個(gè)鈍角.
(5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.
(6)三角形中三角之比 為1∶2∶3,則三個(gè)角各為多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度數(shù);
(b)若BD是AC邊上的高,求 DBC的度數(shù)?
活動(dòng)目的:
通過學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
教學(xué)效果:
學(xué)生對于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問題。
第四環(huán)節(jié):課堂小結(jié)
活動(dòng)內(nèi)容:
、 證明三角形內(nèi)角和定理有哪幾種方法?
② 輔助線的作法技巧.
、 三 角形內(nèi)角和定理的簡單應(yīng)用.
活動(dòng)目的:
復(fù)習(xí)鞏固本課知識,提高學(xué)生的掌握程度.
教學(xué)效果:
學(xué)生對于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運(yùn)用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.
課后練習(xí):課本第239頁隨堂練習(xí);第241頁習(xí)題6.6第1,2,3題
四、教學(xué)反思
三角形的有關(guān)知識是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識,也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識相關(guān)聯(lián)的知識,看似簡單,但如果處理不好,會導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):
(1) 通過折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號化處理,最后達(dá)到推理論證的要求。
(2) 充分展示學(xué)生的個(gè)性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。
(3) 添加輔助線是教學(xué)中的一個(gè)難點(diǎn), 如何添加輔助線則應(yīng)允許學(xué)生展開思考并爭論,展示學(xué)生的思維過程,然后在老師的引導(dǎo)下達(dá)成共識。
三角形內(nèi)角和教案 篇3
(一)教材的地位和作用
《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。
(二)教學(xué)目標(biāo)
基于以上對教材的分析以及對教學(xué)現(xiàn)狀的思考,我從知識與技能,教學(xué)過程與方法,情感態(tài)度價(jià)值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):
1。通過"量一量","算一算","拼一拼","折一折"的小組活動(dòng)的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識解決一些簡單問題。
2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。
3。通過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實(shí)踐能力。
(三)教學(xué)重,難點(diǎn)
因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個(gè)過程中學(xué)生要了解的是"內(nèi)角"的概念,如何驗(yàn)證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°。
二、說教法,學(xué)法
本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180°。
因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力"。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動(dòng)手操作,主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從"猜測――驗(yàn)證"展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
三,說教學(xué)過程
我以引入,猜測,證實(shí),深化和應(yīng)用五個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
引入
呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識什么是"內(nèi)角"。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個(gè)內(nèi)角 (四個(gè))它的內(nèi)角有什么特點(diǎn) (都是直角)這四個(gè)內(nèi)角的和是多少 (360°)三角形有幾個(gè)內(nèi)角呢 從而引入課題。
【設(shè)計(jì)意圖】
讓學(xué)生整體感知三角形內(nèi)角和的知識,這樣的教學(xué), 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景, 滲透數(shù)學(xué)知識之間的聯(lián)系, 有效地避免了新知識的"橫空出現(xiàn)"。
猜測
提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢
【設(shè)計(jì)意圖】
引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。
(三)驗(yàn)證
。1)量:請學(xué)生每人畫一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度
(2)撕―拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來拼在一起,成為一個(gè)平角 請學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來拼一拼。
。3)折—拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°。
。4)畫:根據(jù)長方形的內(nèi)角和來驗(yàn)證三角形內(nèi)角和是180°。
一個(gè)長方形有4個(gè)直角,每個(gè)直角90°,那么長方形的內(nèi)角和就是360°,每個(gè)長方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。
【設(shè)計(jì)意圖】
利用已經(jīng)學(xué)過的知識構(gòu)建新的數(shù)學(xué)知識, 這不僅有助于學(xué)生理解新的知識, 而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長方形四個(gè)內(nèi)角的和等知識聯(lián)系起來, 并使學(xué)生在新舊知識的連接點(diǎn)和新知識的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個(gè)探索過程中, 學(xué)生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。
深化
質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎
觀察:(指著黑板上兩個(gè)大小不同但三個(gè)角對應(yīng)相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)
結(jié)論: 角的兩條邊長了, 但角的大小不變。因?yàn)榻堑?大小與邊的長短無關(guān)。
實(shí)驗(yàn): 教師先在黑板上固定小棒, 然后用活動(dòng)角與小棒組成一個(gè)三角形, 教師手拿活動(dòng)角的頂點(diǎn)處, 往下壓, 形成一個(gè)新的三角形, 活動(dòng)角在變大, 而另外兩個(gè)角在變小。這樣多次變化, 活動(dòng)角越來越大, 而另外兩個(gè)角越來越小。最后, 當(dāng)活動(dòng)角的兩條邊與小棒重合時(shí)。
結(jié)論:活動(dòng)角就是一個(gè)平角180°, 另外兩個(gè)角都是0°。
【設(shè)計(jì)意圖】
小學(xué)生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識聯(lián)系起來,通過讓學(xué)生觀察利用"角的大小與邊的長短無關(guān)"的舊知識來理解說明。
對于利用精巧的小教具的演示, 讓學(xué)生通過觀察,交流,想象, 充分感受三角形三個(gè)角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。
(五)應(yīng)用
1;A(chǔ)練習(xí):書本練習(xí)十四的習(xí)題9,求出三角形各個(gè)角的度數(shù)。
2。變式練習(xí):一個(gè)三角形可能有兩個(gè)直角嗎 一個(gè)三角形可能有兩個(gè)鈍角嗎 你能用今天所學(xué)的知識說明嗎
3。(1)將兩個(gè)完全一樣的直角三角形拼成一個(gè)大三角形, 這個(gè)大三角形的內(nèi)角和是多少
。2) 將一個(gè)大三角形分成兩個(gè)小三角形, 這兩個(gè)小三角形的內(nèi)角和分別是多少
4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習(xí)十四的習(xí)題
【設(shè)計(jì)意圖】
習(xí)題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個(gè)層次的練習(xí)中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運(yùn)用知識解決問題的能力。
第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運(yùn)用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。
第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。
第三題通過兩個(gè)三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的 變化情況, 進(jìn)一步理解三角形內(nèi)角和的知識。
第四題是對三角形內(nèi)角和知識的進(jìn)一步拓展, 引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中, 學(xué)生能把這些多邊形分成幾個(gè)三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進(jìn)學(xué)生對多邊形內(nèi)角和知識的整體構(gòu)建。
三角形內(nèi)角和教案 篇4
探索三角形內(nèi)角和的度數(shù)以及已知兩個(gè)角度數(shù)求第三個(gè)角度數(shù)。
教學(xué)目標(biāo):
1、通過測量、撕拼、折疊等探索活動(dòng),使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
2、已知三角形兩個(gè)角的度數(shù),會求第三個(gè)角的度數(shù)。
3、培養(yǎng)學(xué)生動(dòng)手實(shí)踐,動(dòng)腦思考的習(xí)慣。
教學(xué)重點(diǎn):
了解三角形三個(gè)內(nèi)角的度數(shù)。
教學(xué)難點(diǎn):
理解三角形三個(gè)內(nèi)角大小的關(guān)系。
教具學(xué)具準(zhǔn)備:
課件三角形若干量角器剪刀。
教材與學(xué)生
教材創(chuàng)設(shè)了一個(gè)有趣的問題情境,通過對大小兩個(gè)三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個(gè)活動(dòng),通過學(xué)生測量,折疊,撕拼來找到答案。
學(xué)生在已有的會用量角器來度量一個(gè)角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實(shí)踐,得出結(jié)論。
教學(xué)過程:
一、呈現(xiàn)真實(shí)狀態(tài)。
師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個(gè)三角形,一個(gè)是大三角形,一個(gè)是小三角形(圖略),到底哪一個(gè)三角形的內(nèi)角和比較大呢?
學(xué)生各抒己見。
二、提出問題:
師;剛才我們觀察三角形哪個(gè)內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯(cuò)下面我們來測量驗(yàn)證。
。1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個(gè)三角形內(nèi)角和度數(shù),并做好記錄,記錄每個(gè)內(nèi)角的度數(shù)。
。2)組內(nèi)交流。
。3)全班交流。由小組匯報(bào)測出結(jié)果(三角形內(nèi)角和)
。4)師小結(jié):我們通過測量發(fā)現(xiàn),每個(gè)三角形的內(nèi)角和測出結(jié)果接近180。
三。自主探索、研究問題、歸納總結(jié):
師引導(dǎo)提問:三角形的內(nèi)角和會不會就是180呢?
。ㄒ唬┙M內(nèi)探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報(bào)探索的過程與發(fā)現(xiàn)的結(jié)果。
(有的小組想不出來,可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實(shí)踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)
。3)把你沒有想到的方法動(dòng)手做一次
。ㄊ箤W(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)
。4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。
(二)教師演示
撕拼法1。教師取出三角形教具,把三個(gè)角撕下來,拼在一起,如圖所示
2.師:這三個(gè)內(nèi)角放在一起你有什么發(fā)現(xiàn)?
生:發(fā)現(xiàn)三個(gè)內(nèi)角拼成一個(gè)平角。
師:平角是多少度呢?說明什么?
生:180?說明三個(gè)內(nèi)角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
3。學(xué)生每人動(dòng)手實(shí)踐,看看是不是不同的三角形是否都有這個(gè)特點(diǎn),也能拼出一個(gè)平角呢?
進(jìn)行實(shí)驗(yàn)后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個(gè)內(nèi)角和是180。
折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因?yàn)闇y量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個(gè)內(nèi)角剛好拼成一個(gè)平角,進(jìn)一步說明三個(gè)內(nèi)角和是180,現(xiàn)在再來演示另一種實(shí)驗(yàn),再次證明我們的發(fā)現(xiàn)。
你們也來試一試好嗎?
在學(xué)生完成這一實(shí)踐后肯定這一發(fā)現(xiàn)
三角形三個(gè)內(nèi)角和等于180?
:充分發(fā)揮了學(xué)生的主觀能動(dòng)性,讓學(xué)生大膽去思考發(fā)言,把課堂交給學(xué)生,最后老師在演示達(dá)成共識,這樣學(xué)生學(xué)到知識印象頗深,也理解最為透徹,提高課堂教學(xué)的效率
四。鞏固練習(xí),知識升華。
1.完成課本第28頁的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個(gè)鈍角?為什么?
銳角三角形中的兩個(gè)內(nèi)角和能小于90嗎?
3.有一個(gè)四邊形,你能不用量角器而算出它的四個(gè)內(nèi)角和嗎?
試一試,看誰算得快。
師:誰來說說自己的計(jì)算過程?
角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認(rèn)真觀察這兩個(gè)算式,從結(jié)果上看,你發(fā)現(xiàn)了什么?
生:它們的內(nèi)角和都是 180 度。
師:觀察的真仔細(xì)。c(diǎn)擊課件,出示多種多樣的三角形后提問)同學(xué)們,咱們都知道,這兩個(gè)三角形是特殊三角形,在我們的生活中還有許許多多不是這個(gè)樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?
。刍卮鹂赡苡卸荩
。ㄒ环N全部說是:)
師:請問,你們是怎么想的,為什么這么認(rèn)為?
生: ……
師:看來,大家是通過這兩個(gè)三角形猜想的,是嗎?想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)
。ㄒ环N有一部分同學(xué)說是,有一部分同學(xué)說不是:)
師:看來,大家的意見不一致, 想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)
。ǘ﹦(dòng)手操作,探究新知
師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?
生:我準(zhǔn)備用量的方法。
師:然后呢?
生:然后把它們?nèi)齻(gè)內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?
師:說的真不錯(cuò),還有沒有其它的方法?
生:我是把三角形的三個(gè)角剪下來,拼在一起( 師鼓勵(lì): 你的想法很有創(chuàng)意, 等一會兒用你的行動(dòng)來驗(yàn)證你的猜想吧!)
生:……
。ㄈ缟粫r(shí)想不到,師可引導(dǎo):他是把三個(gè)內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個(gè)內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)
師: 好啦, 老師相信咱們班的同學(xué)個(gè)個(gè)都是小數(shù)學(xué)家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個(gè)內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點(diǎn)。咱們比一比,看一看,哪個(gè)小組的方法多,方法好!
開始吧。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時(shí)間:5 分鐘
師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?
師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
。 預(yù)設(shè): 如果第一類同學(xué)說的是量的方法)
師:你是用什么來研究的?
生:量角器。
師: 那請你說一下你度量的結(jié)果好嗎?
。 生匯報(bào)度量結(jié)果)
師: 剛才有的同學(xué)測量的結(jié)果是180 度,有的同學(xué)測量的結(jié)果是179 度,有的同學(xué)測量的.結(jié)果是182 度,各不相同,但是這些結(jié)果都比較接近于多少?
生:180 度。
師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗(yàn)證嗎?
生:我是先把三角形的三個(gè)角剪掉以后粘在一起,然后在量出它們?nèi)齻(gè)角組成的度數(shù)。
師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點(diǎn)擊 FLASH :把三角形按照三個(gè)內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個(gè)頭,插在角一角二的中間,這樣它們?nèi)齻(gè)內(nèi)角就形成了一個(gè)大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個(gè)大角是個(gè)什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)
師:好極了,剛才這個(gè)小組的同學(xué)用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?
生:我們還用了折的方法(生介紹方法)
師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點(diǎn)擊 FLASH :先找到兩條邊的中點(diǎn),把它連起來,把角一沿著中間的這條線向?qū)厡φ,再把角二向里對折,使它的頂點(diǎn)與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻(gè)內(nèi)角就形成了一個(gè)大角,這個(gè)大角是個(gè)什么角呢?)
生:是個(gè)平角。180 度。
師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個(gè)同學(xué)用了一種方法來進(jìn)行研究,大家想知道嗎?
師:請這位同學(xué)來說給大家聽聽吧!
生:我把兩個(gè)相同的直角三角形拼成了一個(gè)長方形,因?yàn)殚L方形里面有四個(gè)直角,所以它的內(nèi)角和是360 度,那么一個(gè)三角形的內(nèi)角和就是180 度。
師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學(xué)們,現(xiàn)在我們回想一下,剛才測量的不同結(jié)果是一個(gè)準(zhǔn)確數(shù)還是一個(gè)近似數(shù)?為什么會出現(xiàn)這種情況呢?
生 1 :量的不準(zhǔn)。
生 2 :有的量角器有誤差。
師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個(gè)三角形的內(nèi)角和也將是 180 度。
師:同學(xué)們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個(gè)相同的發(fā)現(xiàn),這個(gè)發(fā)現(xiàn)就是?
生:三角形的內(nèi)角和是180 度。(師板書)
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
。ㄈ┩卣箲(yīng)用,深化認(rèn)識
師:請看老師手上的這兩個(gè)三角形,左邊這個(gè)內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)
師:現(xiàn)在老師把它們拼在一起,這個(gè)大三角形的內(nèi)角和又是多少度呢?
。ㄉ鸷髱熞龑(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是 180 度。)
師:剛才我們在討論學(xué)習(xí)三角形知識的時(shí)候,三角形中的兩個(gè)好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內(nèi)容:一個(gè)大一些的直角三角形說:“我的個(gè)頭比你大,我的內(nèi)角和一定比你大”。另一個(gè)稍小的銳角三角形說:“是這樣嗎”?)
師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!
師:真不錯(cuò),你們當(dāng)了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?
師:好,請看大屏幕!
。ǔ鍪净A(chǔ)練習(xí))在一個(gè)三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵(lì):說的真好!
出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。
(出示)小紅的爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是 70 度,它的頂角是多少度?
師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運(yùn)用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?
(預(yù)設(shè):師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?
師:太棒了,這位同學(xué)把這個(gè)四邊形分割成了二個(gè)三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?
師: 同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?
師:嗯,真不錯(cuò), 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學(xué)家帕斯卡 在 1635 年他 12 歲時(shí)獨(dú)自發(fā)現(xiàn)的, 今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個(gè)“帕斯卡”!
師:好,下課!同學(xué)們再見!
三角形內(nèi)角和教案 篇5
教材分析
教材的小標(biāo)題為“探索與發(fā)現(xiàn)”,說明這部分內(nèi)容要求學(xué)生自主探索,并發(fā)現(xiàn)有關(guān)三角形內(nèi)角和性質(zhì)。
教材創(chuàng)設(shè)了一個(gè)有趣的問題情境,以此激發(fā)學(xué)生的興趣,引出探索活動(dòng)。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會想到用測量角的方法,此時(shí)就可以安排小組活動(dòng)。每組同學(xué)可以畫出大小、形狀不同的若干個(gè)三角形,分別量出三個(gè)內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個(gè)三角形內(nèi)角和都在180°左右。
三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個(gè)活動(dòng):一是把三角形三個(gè)內(nèi)角撕下來,再拼在一起,組成一個(gè)平角,因此三角形內(nèi)角和是180°。二是把三個(gè)內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個(gè)平角。每個(gè)活動(dòng)都要使學(xué)生動(dòng)手試一試,加深對三角形內(nèi)角和的認(rèn)識,體驗(yàn)三角形內(nèi)角和性質(zhì)的探索過程。
另外,教材還從兩個(gè)方面引導(dǎo)學(xué)生應(yīng)用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個(gè)角的度數(shù),求另一個(gè)角的度數(shù);二是直角三角形里的兩個(gè)銳角和等于90°,鈍角三角形里的兩個(gè)銳角和小于90°。
學(xué)情分析
學(xué)生在前面的學(xué)習(xí)中已經(jīng)認(rèn)識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),知道了平角是180°;學(xué)生通過前幾年的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣,所以在學(xué)生具備這些數(shù)學(xué)知識和能力的基礎(chǔ)上,來引導(dǎo)學(xué)生探索和發(fā)現(xiàn)三角形內(nèi)角和是180°這一性質(zhì)。
要讓學(xué)生明確一個(gè)三角形分成兩個(gè)小三角形后,每個(gè)三角形內(nèi)角和還是180°,兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內(nèi)角和也是180°。
教學(xué)目標(biāo)
1、知識目標(biāo):讓學(xué)生探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個(gè)角度,會求出第三個(gè)角度。
2、能力目標(biāo):培養(yǎng)學(xué)生動(dòng)手操作和合作交流的能力,促進(jìn)掌握學(xué)習(xí)數(shù)學(xué)的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實(shí)際問題。
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°的過程。
教學(xué)過程:
(一)、激趣導(dǎo)入:
1、認(rèn)識三角形內(nèi)角
我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點(diǎn)?
(三角形是由三條線段圍成的圖形,三角形有三個(gè)角,…。)
請看屏幕(課件演示三條線段圍成三角形的過程)。
三條線段圍成三角形后,在三角形內(nèi)形成了三個(gè)角,(課件分別閃爍三個(gè)角及它的弧線),我們把三角形里面的這三個(gè)角分別叫做三角
形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
2、設(shè)疑激趣
現(xiàn)在有兩個(gè)三角形朋友為了一件事正在爭論,我們來幫幫它們。(播放課件)
同學(xué)們,請你們給評評理:是這樣嗎?
現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學(xué)認(rèn)為大三角形的內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個(gè)三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?
這節(jié)課我們就一起來研究這個(gè)問題。(板書課題:三角形的內(nèi)角和)
(二)、動(dòng)手操作,探究新知
1、探究特殊三角形的內(nèi)角和
師拿出兩個(gè)三角板,問:它們是什么三角形?
(直角三角形)
請大家拿出自己的兩個(gè)三角尺,在小組內(nèi)說說每一個(gè)三角尺上三個(gè)角的度數(shù),并求出這兩個(gè)直角三角形的內(nèi)角和。
。ㄓ捎趯W(xué)生在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),所以能夠很快求得每塊三角尺的3個(gè)角的和都是180°)
從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你們發(fā)現(xiàn)了什么?
(這兩個(gè)三角形的內(nèi)角和都是180°)。
這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形內(nèi)角和
(1).猜一猜。
猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)
(2).操作、驗(yàn)證一般三角形內(nèi)角和是180°。
所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
。ǹ梢韵攘砍雒總(gè)內(nèi)角的度數(shù),再加起來。)
測量計(jì)算,是嗎?那就請四人小組共同計(jì)算吧!
老師讓每個(gè)同學(xué)都準(zhǔn)備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個(gè)內(nèi)角的度數(shù),下面就請同學(xué)們在小組內(nèi)每種各選一個(gè)求出它們的內(nèi)角和,把結(jié)果填在表中:
(3)小組匯報(bào)結(jié)果。
請各小組匯報(bào)探究結(jié)果
提問:你們發(fā)現(xiàn)了什么?
小結(jié):通過測量計(jì)算我們發(fā)現(xiàn)每個(gè)三角形的三個(gè)內(nèi)角和都在180°左右。
3繼續(xù)探究
。1)動(dòng)手操作,驗(yàn)證猜測。
沒有得到統(tǒng)一的結(jié)果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學(xué)們動(dòng)腦筋想一想,能通過動(dòng)手操作來驗(yàn)證嗎?
(先小組討論,再匯報(bào)方法)
大家的辦法都很好,請你們小組合作,動(dòng)手操作。
。2)學(xué)生操作,教師巡視指導(dǎo)。(3)全班交流匯報(bào)驗(yàn)證方法、結(jié)果。
學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)
我們可以得出一個(gè)怎樣的結(jié)論?(三角形的內(nèi)角和是180°)
引導(dǎo)學(xué)生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角,使學(xué)生證實(shí)三角形內(nèi)角和確實(shí)是180°,測量計(jì)算有誤差。
5、辨析概念,透徹理解。
(出示一個(gè)大三角形)它的內(nèi)角和是多少度?
。ǔ鍪疽粋(gè)很小的三角形)它的內(nèi)角和是多少度?
一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個(gè)大三角形的內(nèi)角和又是多少呢?(學(xué)生有的答360°,有的180°.)
把大三角形平均分成兩份。每個(gè)小三角形的.內(nèi)角和是多少度?(生有的答90°,有的180°。)
這兩道題都有兩種答案,到底哪個(gè)對?為什么?
。▽W(xué)生個(gè)個(gè)臉上露出疑問。)
大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。
經(jīng)過一翻激烈的討論探究后,學(xué)生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
。ㄈ┬〗Y(jié)
剛才同學(xué)們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
(四)、鞏固練習(xí),拓展應(yīng)用
下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
1、求三角形中一個(gè)未知角的度數(shù)。
。1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
。2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判斷
。1)一個(gè)三角形的三個(gè)內(nèi)角度數(shù)是:90°、75°、25°。()
(2)一個(gè)三角形至少有兩個(gè)角是銳角。()
。3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。()
。4)直角三角形的兩個(gè)銳角和等于90°。()
3、解決生活實(shí)際問題。
。1)爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70°,它的頂角是多少度?
。2)交通警示牌“讓”為等邊三角形,求其中一個(gè)角的度數(shù)。
4、拓展練習(xí)。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
小組的同學(xué)討論一下,看誰能找到最佳方法。
學(xué)生匯報(bào),在圖中畫上虛線,教師課件演示。
請同學(xué)們自己在練習(xí)本上計(jì)算。
(四)、課堂總結(jié)
通過這節(jié)課的學(xué)習(xí),你有哪些收獲?
三角形內(nèi)角和教案 篇6
尊敬的各位評委老師:
大家好!今天我很高興也很榮幸能有這個(gè)機(jī)會與大家共同交流,在深入鉆研教材,充分了解學(xué)生的基礎(chǔ)上,我準(zhǔn)備從以下幾個(gè)方面進(jìn)行說課:
一、教材分析
“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。
二、教學(xué)目標(biāo)
1、知識與技能:明確三角形的內(nèi)角的概念,使學(xué)生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運(yùn)用這一規(guī)律解決問題。
2、過程和方法:通過學(xué)生猜、量、拼、折、觀察等活動(dòng),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。
3、情感與態(tài)度:使學(xué)生感受數(shù)學(xué)圖形之美及轉(zhuǎn)化思想,體驗(yàn)數(shù)學(xué)就在我們身邊。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):動(dòng)手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進(jìn)行簡單的運(yùn)用。
教學(xué)難點(diǎn):采用多種途徑驗(yàn)證三角形的內(nèi)角和是180°。
四、學(xué)情分析
通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會量角,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個(gè)結(jié)論。
五、教學(xué)法分析
本節(jié)課采用自主探索、合作交流的教學(xué)方法,學(xué)生自主參與知識的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用。
六、課前準(zhǔn)備
1、教師準(zhǔn)備:多媒體課件、三角形教具。
2、學(xué)生準(zhǔn)備:銳、直、鈍角三角形各兩個(gè),量角器、剪刀。
七、教學(xué)過程
(一)、創(chuàng)設(shè)情境,激趣導(dǎo)入
導(dǎo)入:“同學(xué)們,有三位老朋友已經(jīng)恭候我們多時(shí)了!埃ǔ鍪救切蝿(dòng)畫課件),讓學(xué)生依次說出各是什么三角形。
課件分別閃爍三角形三個(gè)內(nèi)角,并介紹:“這三個(gè)角叫做三角形的內(nèi)角,把三個(gè)角的度數(shù)加起來,就是三角形的內(nèi)角和。請學(xué)生畫一個(gè)三角形,要求:有兩個(gè)直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。
。ǘ、自主探究、合作交流
1、探索特殊三角形內(nèi)角和
拿出自己的一副三角板,同桌之間互相說一說各個(gè)角的.度數(shù)。
三角形內(nèi)角和是多少度呢?指名匯報(bào)。90°+30°+60°=180°
90°+45°+45°=180°
從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你發(fā)現(xiàn)了什么?
2、探索一般三角形的內(nèi)角和
一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進(jìn)行探究,看看哪個(gè)組的方法多而且富有新意。
3、匯報(bào)交流
請小組代表匯報(bào)方法。
1)量:你測量的三個(gè)內(nèi)角分別是多少度?和呢?(有不同意見)
沒有統(tǒng)一的結(jié)果,有沒有其他方法?
2)剪―拼:把三角形的三個(gè)內(nèi)角剪下來拼在一起,成為一個(gè)平角,利用平角是180°這一特點(diǎn),得出結(jié)論。(學(xué)生嘗試驗(yàn)證)
3)折拼:學(xué)生邊演示邊匯報(bào)。把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角。所以得出三角形的內(nèi)角和是180°。(學(xué)生嘗試驗(yàn)證)
4)教師課件驗(yàn)證結(jié)果。
請看屏幕,老師也來驗(yàn)證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個(gè)怎樣的結(jié)論?
學(xué)生回答后教師板書:三角形的內(nèi)角和是180°
為什么有的小組用測量的方法不能得到180°?(誤差)
4、驗(yàn)證深化
質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?(一樣)
誰能說一說不能畫出有兩個(gè)直角的三角形的原因?
。ㄈ、應(yīng)用規(guī)律,解決問題:
揭示規(guī)律后,學(xué)生要掌握知識,就要通過解答實(shí)際問題。
1、為了讓學(xué)生積極參與,我設(shè)計(jì)了闖關(guān)的活動(dòng)來激勵(lì)學(xué)生的興趣。闖關(guān)成功會獲得小獎(jiǎng)?wù)隆?/p>
第一關(guān):基礎(chǔ)練習(xí),要求學(xué)生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角(課件出示)
第二關(guān),提高練習(xí),
、僖阎妊切蔚牡捉,求頂角。②求等邊三角形每個(gè)角的度數(shù)是多少。直角三角形已知一個(gè)銳角,求另一個(gè)。
讓學(xué)生靈活應(yīng)用隱含條件來解決問題,進(jìn)一步提高能力。
2、小組合作練習(xí),完成相應(yīng)做一做。
(四)、課堂總結(jié),效果檢測。
一節(jié)成功的好課要有一個(gè)好的開頭,更要有一個(gè)完美的結(jié)尾,數(shù)學(xué)是使人變聰明的學(xué)科,通過這節(jié)課的學(xué)習(xí),你收獲了什么?學(xué)生們暢所欲言。接下來老師要檢查大家的學(xué)習(xí)效果,學(xué)生完成答題卡,組長評判,集體匯報(bào)。
。ㄎ澹┳鳂I(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。
八、板書設(shè)計(jì)
通過這樣的設(shè)計(jì),使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗(yàn)到探索的樂趣,使學(xué)生在自主中學(xué)習(xí),在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!
三角形內(nèi)角和教案 篇7
探索與發(fā)現(xiàn):三角形內(nèi)角和
課型
新授課
設(shè)計(jì)說明
本節(jié)課是在學(xué)生已經(jīng)掌握了鈍角、銳角、直角、平角及三角形分類的基礎(chǔ)上,讓學(xué)生通過直觀操作來認(rèn)識和學(xué)習(xí)的。
1.重視知識的探究與發(fā)現(xiàn)。
在教學(xué)中,概念的形成沒有直接給出,而是整節(jié)課都是在引導(dǎo)學(xué)生的實(shí)驗(yàn)操作、活動(dòng)探究中進(jìn)行。在探究活動(dòng)中,不但重視知識的形成過程,而且注意留給學(xué)生充分進(jìn)行主動(dòng)探究和交流的空間,讓學(xué)生歸納出三角形內(nèi)角和等于180°。
2.重視學(xué)生的合作探究學(xué)習(xí)。
使學(xué)生能夠積極主動(dòng)地參與到數(shù)學(xué)活動(dòng)中,能在實(shí)踐中感知、發(fā)表自己的見解,學(xué)生感受到通過自己的努力取得成功所帶來的滿足感,同時(shí)也培養(yǎng)了學(xué)生的探究能力和創(chuàng)新能力。
課前準(zhǔn)備
教師準(zhǔn)備:PPT課件 量角器 直尺 三角尺
學(xué)生準(zhǔn)備:量角器 三角尺
教學(xué)過程
一、常識導(dǎo)入。(3分鐘)
1.介紹帕斯卡:早在300多年前有一個(gè)科學(xué)家,他在12歲時(shí)驗(yàn)證了任意三角形的內(nèi)角和都是180°,他就是法國科學(xué)家、物理學(xué)家帕斯卡。
2.導(dǎo)入新課:這節(jié)課我們也來驗(yàn)證一下三角形的內(nèi)角和。
1.傾聽教師的介紹,了解帕斯卡。
2.明確本節(jié)課的學(xué)習(xí)內(nèi)容。
1.填空。
(1)有一個(gè)角是鈍角的三角形是( )三角形;有一個(gè)角是直角的三角形是( )三角形;三個(gè)角都是銳角的'三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分鐘)
(一)量算法。
1.探究特殊三角形的內(nèi)角和。
(1)出示一副三角尺,引導(dǎo)學(xué)生說一說各個(gè)角的度數(shù)。
(2)引導(dǎo)學(xué)生算一算它們的內(nèi)角和各是多少度。
(3)引導(dǎo)學(xué)生得出結(jié)論。
2.探究一般三角形的內(nèi)角和。
(1)引導(dǎo)學(xué)生猜一猜其他三角形的內(nèi)角和是多少度。
(2)組織學(xué)生驗(yàn)證一般三角形的內(nèi)角和是180°。
、僖龑(dǎo)學(xué)生量出每個(gè)內(nèi)角的度數(shù),再計(jì)算三個(gè)內(nèi)角的和。
、谝龑(dǎo)學(xué)生分工合作,把結(jié)果填入記錄表中。
③引導(dǎo)學(xué)生說說自己的發(fā)現(xiàn)。
(3)引導(dǎo)學(xué)生明確由于測量有誤差,實(shí)際上三角形的內(nèi)角和是180°。
(二)剪拼法。
1.組織學(xué)生用剪拼的方法求三角形的內(nèi)角和。
2.引導(dǎo)學(xué)生總結(jié)發(fā)現(xiàn)。
3.課件演示,得出三角形的內(nèi)角和是180°的結(jié)論。
(三)折拼法。
1.引導(dǎo)學(xué)生結(jié)合剪拼法嘗試折拼法。
2.引導(dǎo)學(xué)生得出結(jié)論。
3.課件演示折拼法。
(一)1.(1)說出每個(gè)三角尺中各個(gè)角的度數(shù)。
、90°;60°;30°。
、90°;45°;45°。
(2)獨(dú)立算出每個(gè)三角尺的內(nèi)角和。
(3)得出結(jié)論:這兩個(gè)三角尺的內(nèi)角和都是180°。
2.(1)同桌之間互相說說自己的看法。
猜測:一種是內(nèi)角和可能是180°,另一種是內(nèi)角和一定是180°。
(2)小組合作進(jìn)行探究,量一量,算一算,說一說。
三角形種類 | 每個(gè)內(nèi)角 的度數(shù) | 三個(gè)內(nèi) 角的和 | ||
銳角三角形 | 65° | 46° | 68° | 179° |
鈍角三角形 | 110° | 25° | 46° | 181° |
等腰三角形 | 70° | 55° | 55° | 180° |
等邊三角形 | 60° | 60° | 60° | 180° |
通過觀察發(fā)現(xiàn):三角形的內(nèi)角和都在180°左右。
(3)聽老師講解,明確三角形的內(nèi)角和是180°。
(二)1.把一個(gè)三角形的三個(gè)內(nèi)角剪下來,小組內(nèi)拼合。在拼合過程中要注意:頂點(diǎn)重合,三個(gè)角拼合。
2.發(fā)現(xiàn)三角形的三個(gè)內(nèi)角正好拼成了一個(gè)平角,也就是180°。
3.觀看課件演示,明確三角形的三個(gè)內(nèi)角拼成了一個(gè)平角,所以它的內(nèi)角和是180°。
(三)1.動(dòng)手折一折、拼一拼。
2.得出結(jié)論:三角形的三個(gè)內(nèi)角拼在一起正好是一個(gè)平角,所以三角形的內(nèi)角和是180°。
3.觀看課件演示,再次明確三角形的內(nèi)角和是180°。
2.算一算。
在一個(gè)直角三角形中,已知一個(gè)銳角是35°,另一個(gè)銳角是多少度?
3.在能組成三角形的三個(gè)角的后面畫“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一個(gè)三角形,其中一個(gè)角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三個(gè)內(nèi)角,請你計(jì)算出每個(gè)三角形中∠1的度數(shù)。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、鞏固練習(xí)。(16分鐘)
把正確答案的序號填在括號里。
1.把兩個(gè)小三角形合成一個(gè)大三角形,這個(gè)大三角形的內(nèi)角和是( )。
A.90° B.180° C.360°
2.一個(gè)三角形中有兩個(gè)銳角,則第三個(gè)角( )。
A.也是銳角
B.一定是直角
C.一定是鈍角
D.無法確定
小組合作,選一選,明確答案。
1.明確任何一個(gè)三角形的內(nèi)角和都是180°,三角形的內(nèi)角和與三角形的大小無關(guān)。
2.通過討論,明確任何一個(gè)三角形都至少有兩個(gè)銳角,所以無法確定。
6.如下圖,在直角三角形中,已知∠2=30°,不計(jì)算,你知道∠1的度數(shù)嗎?
四、課堂總結(jié),拓展延伸。(3分鐘)
1.總結(jié)本節(jié)課的學(xué)習(xí)內(nèi)容。
2.布置課后作業(yè)。
談自己本節(jié)課的收獲。
三角形內(nèi)角和教案 篇8
教學(xué)內(nèi)容:
人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書數(shù)學(xué)四年級下冊第67頁。
設(shè)計(jì)理念:
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一。《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價(jià)值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。
教材分析:
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180。
學(xué)情分析:
學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的.途徑知道三角形的內(nèi)角和是180度的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點(diǎn)。四年級的學(xué)生已經(jīng)初步具備了動(dòng)手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運(yùn)用已有知識和經(jīng)驗(yàn),通過交流、比較、評價(jià)尋找解決問題的途徑和策略。
教學(xué)目標(biāo):
1. 使學(xué)生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運(yùn)用這一規(guī)律解決一些簡單的問題。
2. 使學(xué)生在觀察、操作、分析、猜想、驗(yàn)證、合作、交流等具體活動(dòng)中,提高動(dòng)手操作能力和數(shù)學(xué)思考能力。
3. 使學(xué)生在參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,獲得成功的體驗(yàn),感受探索數(shù)學(xué)規(guī)律的樂趣,產(chǎn)生喜歡數(shù)學(xué)的積極情感,培養(yǎng)積極與他人合作的意識
【三角形內(nèi)角和教案】相關(guān)文章:
三角形內(nèi)角和教案02-19
教案:《三角形的內(nèi)角和》12-17
教案及反思:三角形的內(nèi)角和12-17
《三角形內(nèi)角和》12-13
三角形的內(nèi)角和09-29
三角形的內(nèi)角和12-13
三角形內(nèi)角和教案15篇02-20
《三角形內(nèi)角和》數(shù)學(xué)教案03-26
精選三角形內(nèi)角和教案3篇05-12
【精選】三角形內(nèi)角和教案四篇05-15