午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

現(xiàn)代設(shè)計方法課后習(xí)題答案第三章

時間:2023-05-01 10:26:09 范文 我要投稿
  • 相關(guān)推薦

現(xiàn)代設(shè)計方法課后習(xí)題答案第三章

3.1 可靠性:產(chǎn)品在規(guī)定的條件下和規(guī)定的時間內(nèi),完成規(guī)定功能的能力。

可靠度:產(chǎn)品在規(guī)定的條件下和規(guī)定的時間內(nèi),完成規(guī)定功能的概率。 可靠度計算方法:R(t)=(N-n(t))/N

3.2失效率:產(chǎn)品工作t時刻尚未失效(或故障)的產(chǎn)品,在該時刻t以后的下一個單位時間內(nèi)發(fā)生失效(或故障)的概率。 λ(t)=lim

N???t?0

tn(t??t)?n(t)

關(guān)系: R(t)= e??o?(t)dt

[N?n(t)]?t

3.3早期失效期:失效率開始由很高的數(shù)值急劇地下降到一個穩(wěn)定的數(shù)值。

正常運行期:失效率低且穩(wěn)定,近似為常數(shù)。 損耗失效期:失效率隨工作時間增加而上升。 常用分布函數(shù):二項分布 F(r?k)=

?cpq

r

r?0

n

k

rn?r

泊松分布 F(t?k) =?

r?0

k

?r!

r

??

指數(shù)分布 F(t)=1-e 正態(tài)分布

F(x)=

??t

?e

??

x

?

(x??)22?(???x??)

y?

對數(shù)正態(tài)分布

F(x)=?

1x??

)?

1?(2

?y

y2

)

dx(x?0)

威布爾分布 F(x)=1-e

?(

?

3.4(1)可靠性設(shè)計和常規(guī)設(shè)計的主要區(qū)別在于,可靠性設(shè)計把一切設(shè)計參數(shù)都視

為隨機變量

(1)傳統(tǒng)設(shè)計方法是將安全系數(shù)作為衡量安全與否的指標(biāo),但安全系數(shù)的大小

并沒有同可靠度直接掛鉤,這就有很大的盲目性,可靠性設(shè)計與之不同,她強調(diào)在設(shè)計階段就把可靠度直接引進到零件中去,即由設(shè)計直接確定固有的可靠度。 (2)傳統(tǒng)設(shè)計方法是把設(shè)計變量視為確定性的單值變量并通過確定性的函數(shù)

進行運算,而可靠性設(shè)計則把設(shè)計變量視為隨機變量并運用隨機方法對設(shè)計變量進行描述和運算。

(3)在可靠性設(shè)計中,由于應(yīng)力s和強度c都是隨機變量,所以判斷一個零

件是否安全可靠,就以強度c大應(yīng)力s的概率大小來表示。

(4)傳統(tǒng)設(shè)計與可靠性設(shè)計都是以零件的安全或失效作為研究內(nèi)容,兩者兼

有密切的聯(lián)系,可靠性設(shè)計是傳統(tǒng)設(shè)計的延伸與發(fā)展

3.5 (1)最大可能的工作應(yīng)力都要小于零件的可能的極限強度。 (2)零件的工作應(yīng)力與強度發(fā)生干涉。

(3)零件的極限強度總是小于最小工作應(yīng)力。

3.6 因為按照靜強度計算所得到的只是理論值,與實際的可靠度分析有一定的

誤差,所以不能按照靜強度來計算。

3.7 ⑴當(dāng)零件的強度c小于零件的工作壓力s時,零件發(fā)生強度失效此時強度可靠度為零;

⑵當(dāng)零件的強度c大于零件的工作壓力s時,此時把應(yīng)力s值在它一切可

能值的范圍內(nèi)進行積分,即可獲得零件的強度失效概率P(c

P(c

?

?sf(c)dc?g(s)ds????0?

⑶求得零件的強度失效概率后,零件的強度可靠性以可靠度R來量度。在正

態(tài)分布條件R=1-P(Z<0)=1- 3.8 令強度差z'=c-s

由于c和s均為正態(tài)分布的隨機變量

?

?z

R

??

1

t2

?

2

dt

?z=?c??s

?z?

'

'

?

2

可靠度:

R?1?P(Z

'

t?Z2 )?1????3.9 零件的強度是指在外界交變應(yīng)力的條件下抵抗疲勞的能力;而材料強度是

指金屬材料在外力作用下抵抗永久變形和斷裂的能力稱為強度。使用材料的強度時是根據(jù)零件的具體情況進行計算的,這樣計算出的結(jié)果相對來說較為接近真實值

機械零件可靠度計算.pdf

3.10

在這里予以參考

3.12 對于非對稱循環(huán)應(yīng)力,在不考慮對稱系數(shù)r對疲勞失效的影響的情況下,得

到不同r值下的疲勞極限值。

3.13 每一荷載量都損耗試件有一定的有效壽命分量;疲勞損傷與試件吸收的功

成正比;這個功與應(yīng)力的作用循環(huán)次數(shù)和在該應(yīng)力值下達(dá)到破壞的循環(huán)次

數(shù)之比成比例;試件達(dá)到破壞時的總損傷量是一個常數(shù);低于疲勞極限Se以下的應(yīng)力,認(rèn)為不再造成損傷;損傷與荷載的作用次序無關(guān);個循環(huán)應(yīng)力產(chǎn)生的所有損傷分量之和等于1,試件就發(fā)生破壞,因此可歸納如下基本

d1?d2?????dk??di

i?1k

dininnn

?于是有1D?2D?????kD?DDNiN1N2NK

關(guān)系式

ni所以??1i

i?1

k

上述的邁納理論沒有考慮應(yīng)

力級間的相互影響和低于疲勞極限S以下應(yīng)力的損傷分量,具有一定的局限性。由于公式簡單,已廣泛應(yīng)用于有限壽命設(shè)計中.

3.14 機械系統(tǒng)的可靠性與組成該系統(tǒng)各單元的可靠性,組合方式和相互匹配

有關(guān);

系統(tǒng)可靠性設(shè)計的目的是時系統(tǒng)在滿足規(guī)定可靠性指標(biāo),完成預(yù)定功能的前提下,使該系統(tǒng)的技術(shù)性能,重量指標(biāo),制造成本及使用壽命等各方面去的協(xié)調(diào),并取得最佳的設(shè)計方案:或是在性能,重量,成本,壽命何求他要求的約束下,設(shè)計出最佳的可靠性系統(tǒng)。

3.15 結(jié)構(gòu)圖是用來表示系統(tǒng)中各元件(零件)的結(jié)構(gòu)裝配關(guān)系,邏輯圖是用

來表示系統(tǒng)中各元件(零件)間的功能關(guān)系; 零件之間的邏輯關(guān)系包括以下幾種: 1)串聯(lián)系統(tǒng) 2)并聯(lián)系統(tǒng) 3)儲備系統(tǒng) 4)表決系統(tǒng) 5)串并聯(lián)系統(tǒng) 6)復(fù)雜系統(tǒng)

3.16 ⑴串聯(lián)系統(tǒng)可靠性:串聯(lián)系統(tǒng)是組成系統(tǒng)的所有單元中任一單元失效就會

導(dǎo)致整流器個系統(tǒng)失效的系統(tǒng)。下圖為串聯(lián)系統(tǒng)的可靠性框圖。假定各單

元是統(tǒng)計獨立的,則其可靠性數(shù)學(xué)模型為

式中,Ra——系統(tǒng)可靠度;Ri——第i單元可靠度 ⑵并聯(lián)系統(tǒng):靠度

Fi——第i單元不可靠度

Ri——第i單元可靠度

式中 Ra——系統(tǒng)可

⑶串并聯(lián)系統(tǒng):

當(dāng)各單元可靠度都相等,均為Rij=R,且n1=n2=……=nm=n,則Rs=1-(1-Rn)m 一般串并聯(lián)系統(tǒng)的可靠度,對單元相同的情況,高于并串聯(lián)系統(tǒng)的可靠度 ⑷后備系統(tǒng):

⑸表決系統(tǒng):通常n個單元的可靠度相同,均為R,則可靠性數(shù)學(xué)模形為:

這是一個更一般的可靠性模型,如果k=1,即為n個相同單元的并聯(lián)系統(tǒng),如果k=n,即為n個相同單元的串聯(lián)系統(tǒng)。

3.17 對于復(fù)雜的系統(tǒng)不能簡化為串聯(lián)·并聯(lián)或者串并聯(lián)等簡單的系統(tǒng)只能用分

析其成功和失效的各種狀態(tài),然后采用布爾真值表法來計算其可靠度。對于有n個原件的系統(tǒng)每個原件都有正常和失效兩種狀態(tài),因此整個系統(tǒng)的狀態(tài)共有2n種,然后對這2n種狀態(tài)進行全面調(diào)查,將該系統(tǒng)正常的概率全

i?1部加起來,即可求得系統(tǒng)的可靠度,。

3.18 平均分配法:對系統(tǒng)中的全部單元分配以相等的可靠度;

按相對失效概率分配可靠度的計算過程:

1)根據(jù)統(tǒng)計數(shù)據(jù)或現(xiàn)場使用經(jīng)驗,定出各單元的預(yù)計失效率

2)計算各單元在系統(tǒng)中實際工作時間的預(yù)計可靠度及預(yù)計失效概率 3)計算各單元的相對失效概率

4)按給定的可靠度指標(biāo)計算系統(tǒng)容許的失效概率 5)計算各單元的容許失效概率 6)計算各單元分配到的可靠度值

3.19 按題意N=2000000次,故㏑N= ㏑2000000=14.509

Rs??Rsi

2n

已知u?15,??0.3

14.509-15

?-1.640.3

由此失效概率為F(t)??(-1.64)?0.0505

所以標(biāo)準(zhǔn)正態(tài)變量為Z?

3.20 由題意可知工作到4000h有兩個失效

N?n(t)40-2

??0.95N40

= F(4000)?1?R(4000)?0.05 R(4000)?

3.21

3.22 應(yīng)用強度差概率密度函數(shù)積分法按式(3-48)計算得

uz?uc-us?600-500?100(Mpa)

?(20)?

n(t??t)-n(t)2

??0.02/h

N?n(t)?t(150-50)?1

?z?c2??s2?2?602?78(Mpa)

Zk?

uz

?z

?

100

?1.2878

'

于是可靠度為:

3.23 由《機械設(shè)計》中公式(13-19)

R?1?P(Z)?1?P(t?-ZR)?1-?(-1.28)?0.899 7

106a1cε Ln=()其中a1為壽命修正系數(shù)

60np

當(dāng)為球軸承時 取ε=3 為滾子軸承是取10/3 a1=60n*ln

c106()?

p

ε=3

時 a1=0.4

ε=10/3時a1=0.28

機械設(shè)計表13-9

a1 0.44 0.33 0.21

R/% 97 98 99 可知可靠度為R球=97.5% R滾子=98.4% 由上可知 對球軸承

106*0.213000003

()=526h 現(xiàn)代設(shè)計方法課后習(xí)題答案第三章 L1球=

60*145107430

對滾子軸承

L1滾=740.2h

【現(xiàn)代設(shè)計方法課后習(xí)題答案第三章】相關(guān)文章:

機械設(shè)計課后習(xí)題答案04-30

納稅實務(wù)課后習(xí)題答案05-01

電路原理課后習(xí)題答案205-01

透鏡 課后習(xí)題05-01

密度 課后習(xí)題05-01

質(zhì)量 課后習(xí)題05-01

現(xiàn)代材料分析方法試題及答案304-30

現(xiàn)代道路設(shè)計理論與方法05-02

電力電子技術(shù)第五版課后習(xí)題答案05-01

工程流體力學(xué)課后習(xí)題答案(第二版)07-20