午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

八年級數(shù)學上冊教案

時間:2024-11-01 16:20:39 數(shù)學教案 我要投稿

八年級數(shù)學人教版上冊教案

  作為一名老師,往往需要進行教案編寫工作,教案是實施教學的主要依據(jù),有著至關重要的作用。那么什么樣的教案才是好的呢?下面是小編整理的八年級數(shù)學人教版上冊教案,希望對大家有所幫助。

八年級數(shù)學人教版上冊教案

八年級數(shù)學人教版上冊教案1

  【學習目標】

  1.掌握等腰三角形的有關概念和性質,運用等腰三角形的性質解決問題。

  2. 通過學生之間的交流活動,培養(yǎng)學生主動與他人合作 交流的意識和良好的學習習慣。

  【學習重點】

  探索和掌握等腰三角形的性質及其應用。

  【學習難點】

  等腰三角形的性質的.應用。

  【學習 過程】

  一、你知道嗎?

  等腰三角形的有關概念

  《等腰三角形應用》講義

  課前預習

  1.SAS,SSS,ASA,AAS,HL

  2.這條線段的兩個端點的距離相等

  3.這個角的兩邊的距離相等

  4.這樣的點有4個

  ?知識點睛

  1.線段垂直平分線上的點到這條線段的兩個端點的距離相等

  2.角平分線上的點到這個角的兩邊距離相等

  3.頂角的平分線 底邊上的中線 底邊上的高 三線合一

  《13.3等腰三角形》專項練習

  1、填空題

  2、如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第 個等腰直角三角形的面積 。

八年級數(shù)學人教版上冊教案2

  一、內容和內容解析

  1.內容

  三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

  2.內容解析

  本節(jié)內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情。

  理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備.

  本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

  二、目標和目標解析

  1.教學目標

  (1)理解三角形的高、中線與角平分線等概念;

  (2)會用工具畫三角形的高、中線與角平分線;

  2.教學目標解析

  (1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

  (2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

  (3)掌握三角形的高、中線與角平分線的畫法.

  (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

  三、教學問題診斷分析

  三角形的高線的理解:三角形的.高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

  三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

  三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質的區(qū)別.

八年級數(shù)學人教版上冊教案3

  教學目標:

  理解同底數(shù)冪的乘法法則,運用同底數(shù)冪的乘法法則解決一些實際問題.通過“同底數(shù)冪的乘法法則”的推導和應用,使學生初步理解特殊到般再到特殊的認知規(guī)律.

  教學重點與難點:

  正確理解同底數(shù)冪的乘法法則以及適用范圍.

  教學過程:

  一、回顧冪的.相關知識

  an的意義:an表示n個a相乘,我們把這種運算叫做乘方.乘方的結果叫冪;a叫做底數(shù),n是指數(shù).

  二、創(chuàng)設情境,感覺新知

  問題:一種電子計算機每秒可進行1012次運算,它工作103秒可進行多少次運算?

  學生分析,總結結果

  1012×103=()×(10×10×10)==1015.

  通過觀察可以發(fā)現(xiàn)1012、103這兩個因數(shù)是同底數(shù)冪的形式,所以我們把像1012×103的運算叫做同底數(shù)冪的乘法.根據(jù)實際需要,我們有必要研究和學習這樣的運算──同底數(shù)冪的乘法.

  學生動手:

  計算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整數(shù))

  教師引導學生注意觀察計算前后底數(shù)和指數(shù)的關系,并能用自己的語言描述.

  得到結論:

 。1)特點:這三個式子都是底數(shù)相同的冪相乘.相乘結果的底數(shù)與原來底數(shù)相同,指數(shù)是原來兩個冪的指數(shù)的和.

  (2)一般性結論:am·an表示同底數(shù)冪的乘法.根據(jù)冪的意義可得:

  am·an=()·()=()=am+n

  am·an=am+n(m、n都是正整數(shù)),即為:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加

  三、小結:

  同底數(shù)冪的乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  注意兩點:

  一是必須是同底數(shù)冪的乘法才能運用這個性質;

  二是運用這個性質計算時一定是底數(shù)不變,指數(shù)相加,即am·an=am+n

八年級數(shù)學人教版上冊教案4

  教學目標

  1.知識與技能

  了解因式分解的意義,以及它與整式乘法的關系.

  2.過程與方法

  經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

  3.情感、態(tài)度與價值觀

  在探索因式分解的方法的活動中,培養(yǎng)學生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學知識的內在含義與價值.

  重、難點與關鍵

  1.重點:了解因式分解的意義,感受其作用.

  2.難點:整式乘法與因式分解之間的關系.

  3.關鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.

  教學方法

  采用“激趣導學”的教學方法.

  教學過程

  一、創(chuàng)設情境,激趣導入

  【問題牽引】

  請同學們探究下面的2個問題:

  問題1:720能被哪些數(shù)整除?談談你的想法.

  問題2:當a=102,b=98時,求a2-b2的值.

  二、豐富聯(lián)想,展示思維

  探索:你會做下面的填空嗎?

  1.ma+mb+mc=( )( );

  2.x2-4=( )( );

  3.x2-2xy+y2=( )2.

  【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.

  三、小組活動,共同探究

  【問題牽引】

 。1)下列各式從左到右的變形是否為因式分解:

 、伲▁+1)(x-1)=x2-1;

 、赼2-1+b2=(a+1)(a-1)+b2;

 、7x-7=7(x-1).

 。2)在下列括號里,填上適當?shù)捻,使等式成立?/p>

 、9x2(______)+y2=(3x+y)(_______);

 、趚2-4xy+(_______)=(x-_______)2.

  四、隨堂練習,鞏固深化

  課本練習.

  【探研時空】計算:993-99能被100整除嗎?

  五、課堂總結,發(fā)展?jié)撃?/strong>

  由學生自己進行小結,教師提出如下綱目:

  1.什么叫因式分解?

  2.因式分解與整式運算有何區(qū)別?

  六、布置作業(yè),專題突破

  選用補充作業(yè).

  板書設計

  15.4.1 因式分解

  1、因式分解 例:

  練習:

  15.4.2 提公因式法

  教學目標

  1.知識與技能

  能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

  2.過程與方法

  使學生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學化歸思想方法進行因式分解.

  3.情感、態(tài)度與價值觀

  培養(yǎng)學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應用價值.

  重、難點與關鍵

  1.重點:掌握用提公因式法把多項式分解因式.

  2.難點:正確地確定多項式的最大公因式.

  3.關鍵:提公因式法關鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

  教學方法

  采用“啟發(fā)式”教學方法.

  教學過程

  一、回顧交流,導入新知

  【復習交流】

  下列從左到右的變形是否是因式分解,為什么?

 。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

 。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

 。5)x2-2xy+y2=(x-y)2.

  問題:

  1.多項式mn+mb中各項含有相同因式嗎?

  2.多項式4x2-x和xy2-yz-y呢?

  請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

  【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

  二、小組合作,探究方法

  【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

  【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

  三、范例學習,應用所學

  【例1】把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  【例2】分解因式,3a2(x-y)3-4b2(y-x)2

  【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)23a2(y-x)+4b2(y-x)2]

  =-(y-x)2 [3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)23a2(x-y)-4b2(x-y)2

  =(x-y)2 [3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.

  【教師活動】引導學生觀察并分析怎樣計算更為簡便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?

  四、隨堂練習,鞏固深化

  課本P167練習第1、2、3題.

  【探研時空】

  利用提公因式法計算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、課堂總結,發(fā)展?jié)撃?/strong>

  1.利用提公因式法因式分解,關鍵是找準最大公因式.在找最大公因式時應注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.

  2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.

  六、布置作業(yè),專題突破

  課本P170習題15.4第1、4(1)、6題.

  板書設計

  15.4.2 提公因式法

  1、提公因式法 例:

  練習:

  15.4.3 公式法(一)

  教學目標

  1.知識與技能

  會應用平方差公式進行因式分解,發(fā)展學生推理能力.

  2.過程與方法

  經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.

  3.情感、態(tài)度與價值觀

  培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.

  重、難點與關鍵

  1.重點:利用平方差公式分解因式.

  2.難點:領會因式分解的解題步驟和分解因式的徹底性.

  3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的.方面上來.

  教學方法

  采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.

  教學過程

  一、觀察探討,體驗新知

  【問題牽引】

  請同學們計算下列各式.

  (1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

  【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.

  (1)(a+5)(a-5)=a2-52=a2-25;

  (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

  【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.

  1.分解因式:a2-25; 2.分解因式16m2-9n.

  【學生活動】從逆向思維入手,很快得到下面答案:

 。1)a2-25=a2-52=(a+5)(a-5).

  (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

  【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.

  平方差公式:a2-b2=(a+b)(a-b).

  評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).

  二、范例學習,應用所學

  【例1】把下列各式分解因式:(投影顯示或板書)

  (1)x2-9y2; (2)16x4-y4;

 。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

  (5)m2(16x-y)+n2(y-16x).

  【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

  【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.

  【學生活動】分四人小組,合作探究.

  解:(1)x2-9y2=(x+3y)(x-3y);

 。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

 。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

 。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

 。5)m2(16x-y)+n2(y-16x)

  =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

  三、隨堂練習,鞏固深化

  課本P168練習第1、2題.

  【探研時空】

  1.求證:當n是正整數(shù)時,n3-n的值一定是6的倍數(shù).

  2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.

  四、課堂總結,發(fā)展?jié)撃?/strong>

  運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通常考慮應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.

  五、布置作業(yè),專題突破

  課本P171習題15.4第2、4(2)、11題.

  板書設計

  15.4.3 公式法(一)

  1、平方差公式: 例:

  a2-b2=(a+b)(a-b) 練習:

  15.4.3 公式法(二)

  教學目標

  1.知識與技能

  領會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價值觀

  培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

  重、難點與關鍵

  1.重點:理解完全平方公式因式分解,并學會應用.

  2.難點:靈活地應用公式法進行因式分解.

  3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.

  教學方法

  采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內容.

  教學過程

  一、回顧交流,導入新知

  【問題牽引】

  1.分解因式:

 。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

  (3) x2-0.01y2.

八年級數(shù)學人教版上冊教案5

  一、教學目標

  1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

  2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

  3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  二、重點、難點和難點的突破方法:

  1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

  2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  3、難點的突破方法:

  首先應交待清楚中位數(shù)和眾數(shù)意義和作用:

  中位數(shù)僅與數(shù)據(jù)的排列位置有關,某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當一組數(shù)據(jù)中某一重復出現(xiàn)次數(shù)較多時,人們往往關心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

  教學過程中注重雙基,一定要使學生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

  在利用中位數(shù)、眾數(shù)分析實際問題時,應根據(jù)具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。

  三、例習題的意圖分析

  1、教材P143的例4的意圖

  (1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。

  (2)、這個例題另一個意圖是交待了當數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

  (3)、問題2顯然反映學習中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學中的一個重要的數(shù)據(jù)代表。

  (4)、這個例題再一次體現(xiàn)了統(tǒng)計學知識與實際生活是緊密聯(lián)系的`,所以應鼓勵學生學好這部分知識。

  2、教材P145例5的意圖

  (1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

  (2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

  (3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

  四、課堂引入

  嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。

  五、例習題的分析

  教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

  教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。

  六、隨堂練習

  1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

  1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

  假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

  2、某商店3、4月份出售某一品牌各種規(guī)格的空調,銷售臺數(shù)如表所示:

  1匹1.2匹1.5匹2匹

  3月12臺20臺8臺4臺

  4月16臺30臺14臺8臺

  根據(jù)表格回答問題:

  商店出售的各種規(guī)格空調中,眾數(shù)是多少?

  假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

  答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

  2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。

  七、課后練習

  1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

  2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

  3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

  A.97、96 B.96、96.4 C.96、97 D.98、97

  4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

  溫度(℃) -8 -1 7 15 21 24 30

  天數(shù)3 5 5 7 6 2 2

  請你根據(jù)上述數(shù)據(jù)回答問題:

  (1).該組數(shù)據(jù)的中位數(shù)是什么?

  (2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

  答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

八年級數(shù)學人教版上冊教案6

  一、內容解析

  本節(jié)課是在學生學習了平均數(shù)、中位數(shù)、眾數(shù)這類刻畫數(shù)據(jù)集中趨勢的量后,學習刻畫數(shù)據(jù)波動(離散)程度的量,即方差。

  當兩組數(shù)據(jù)的平均數(shù)相等或相近時,為了更好的做出選擇經(jīng)常要去了解一組數(shù)據(jù)的波動程度,可以畫折線圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一個量來刻畫,自然引入方差.方差是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,應用它能解決很多實際問題。

  教科書根據(jù)農(nóng)科院選擇甜玉米種子的背景提出問題,從統(tǒng)計上看,這個問題是要計算兩組數(shù)據(jù)的平均數(shù)和比較它們的波動情況.為了直觀看出數(shù)據(jù)的波動情況,教科書畫出了兩個散點圖,通過觀察散點圖,可以比較兩組數(shù)據(jù)的波動情況。這兩個散點圖使學生對數(shù)據(jù)偏離平均數(shù)的情況有一個直觀的認識。在此基礎上,教科書引進了利用方差刻畫數(shù)據(jù)離散程度的方法,介紹了方差的公式,并從方差公式的結構上分析了方差是如何刻畫數(shù)據(jù)的波動的,既方差越大,數(shù)據(jù)的波動越大。

  因此本節(jié)課的教學重點是:方差產(chǎn)生的必要性和應用方差公式解決實際問題。

  二、目標和目標解析

  (一)教學目標

  1.理解方差概念的產(chǎn)生和形成的過程。

  2.會用方差的計算公式來比較兩組數(shù)據(jù)的波動大小。

  (二)教學目標解析

  1.學生能由實際問題中感知,當兩組數(shù)據(jù)的“平均水平”相近時,而實際問題中的意義卻不一樣,需出現(xiàn)另一個量來刻畫,分析數(shù)據(jù)的差異,即方差。

  2.學生能根據(jù)已知條件計算方差,比較兩組數(shù)據(jù)的波動大小。

  三、教學問題診斷分析

  由于這節(jié)課是方差的第一節(jié)課,用方差來刻畫數(shù)據(jù)的離散程度,從方差公式的結構上分析了方差是如何刻畫數(shù)據(jù)的波動的,這些學生理解起來有一定的難度,以致應用時常常出現(xiàn)計算的錯誤,教師要剖析公式中每一個元素的意義,以便學生理解和掌握.

  本節(jié)課的教學難點為:理解方差的意義

  四、教學過程設計

  (一)情景引入

  問題1教科書第124頁根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應該選擇哪種甜玉米種子呢?

  師生活動:學生想到計算它們的平均數(shù).教師把學生分成兩組分別用計算器計算這兩組數(shù)據(jù)的`平均數(shù).(請兩名同學到黑板板書)

  設計意圖:讓學生明確農(nóng)科院應該選擇哪種甜玉米種子?需關注平均產(chǎn)量.

  追問:怎樣估計這個地區(qū)這兩種甜玉米的平均產(chǎn)量?這能說明甲、乙兩種甜玉米一樣好嗎?

  設計意圖:讓學生明確可以用樣本平均數(shù)估計總體平均數(shù),發(fā)現(xiàn)甲、乙兩種甜玉米的平均產(chǎn)量相差不大,但需選擇哪種甜玉米種子?僅僅知道平均數(shù)是不夠的

  (二)探究新知

  問題2如何考察甜玉米產(chǎn)量的穩(wěn)定性呢?請設計統(tǒng)計圖直觀地反映出甜玉米產(chǎn)量的分布情況.

  師生活動:教師引導學生用折線圖或散點圖反映數(shù)據(jù)的分布情況,畫出折線圖或散點圖后,小組討論,得到甲種甜玉米的產(chǎn)量波動較大,乙種甜玉米的產(chǎn)量波動較小.

  設計意圖:讓學生明白當兩組數(shù)據(jù)的平均數(shù)相近時,為了更好的做出選擇需要去了解數(shù)據(jù)的波動大小,畫折線圖或散點圖是描述數(shù)據(jù)波動大小的一種方法,進而引出如何用數(shù)值表示一組數(shù)據(jù)的波動?

  問題3從圖中看出的結果能否用一個量來刻畫呢?

  師生活動:教師直接給出方差公式,并作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小.教師說明,平方是為了在表示各數(shù)據(jù)與其平均數(shù)的偏離程度時,防止正偏差與負偏差的相互抵消.取各個數(shù)據(jù)與其平均數(shù)的差的絕對值也是一種衡量數(shù)據(jù)波動情況統(tǒng)計量,但方差應用更廣泛.整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。

  設計意圖:讓學生明白方差是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,并從方差公式中得到方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小。

  問題4利用方差公式分析甲、乙兩種甜玉米的波動程度。

  師生活動:教師示范:

  關注學生是否會代值到公式中,從結果中能否知道哪種玉米的波動較大。

  設計意圖:使學生深刻體會到數(shù)學來源于實踐,又反過來作用于實踐,不僅使學生對學習數(shù)學產(chǎn)生濃厚的興趣,而且培養(yǎng)了學生應用數(shù)學的意識。

  追問:農(nóng)科院應該選擇哪種甜玉米種子呢?

  設計意圖:讓學生類比用樣本的平均數(shù)估計總體的平均數(shù)一樣,用樣本的方差來估計總體的方差,但用樣本的方差來估計總體的方差時,先要計算它們的平均數(shù)。

  (三)運用新知

  例1在一次芭蕾舞比賽中,甲、乙兩個芭蕾舞團都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:

  甲163 164 164 165 165 166 166 167

  乙163 165 165 166 166 167 168 168

  哪個芭蕾舞團女演員的身高更整齊?

  師生活動:引導學生分析:(1)題目中“整齊”的含義是什么?學生通過思考可以回答出整齊即身高的波動小,所以要研究兩組數(shù)據(jù)的波動大小,即求方差。

  《數(shù)據(jù)的波動程度》課時練習含答案

  1.一組數(shù)據(jù)-1.2.3.4的極差是(  )

  A.5 B.4 C.3 D.2

  答案:A

  知識點:極差

  解析:解答:4-(-1)=5.

  故選:A.

  分析:極差反映了一組數(shù)據(jù)變化范圍的大小,求極差的方法是用一組數(shù)據(jù)中的最大值減去最小值.注意:①極差的單位與原數(shù)據(jù)單位一致.②如果數(shù)據(jù)的平均數(shù)、中位數(shù)、極差都完全相同,此時用極差來反映數(shù)據(jù)的離散程度就顯得不準確.

  2.若一組數(shù)據(jù)-1,0,2,4,x的極差為7,則x的值是(  )

  A.-3 B.6 C.7 D.6或-3

  答案:D

  知識點:極差

  解析:解答:∵數(shù)據(jù)-1,0,2,4,x的極差為7,

  ∴當x是最大值時,x-(-1)=7,

  解得x=6,

  當x是最小值時,4-x=7,

  解得x=-3,

  故選:D.

  分析:根據(jù)極差的定義分兩種情況進行討論,當x是最大值時,x-(-1)=7,當x是最小值時,4-x=7,再進行計算即可。

八年級數(shù)學人教版上冊教案7

  教學目標

  (一)教學知識點

  1.經(jīng)歷探索積的乘方的運算法則的過程,進一步體會冪的意義。

  2.理解積的乘方運算法則,能解決一些實際問題。

 。ǘ┠芰τ柧氁

  1.在探究積的乘方的運算法則的過程中,發(fā)展推理能力和有條理的表達能力。

  2.學習積的乘方的運算法則,提高解決問題的能力。

 。ㄈ┣楦信c價值觀要求

  在發(fā)展推理能力和有條理的語言、符號表達能力的同時,進一步體會學習數(shù)學的興趣,提高學習數(shù)學的`信心,感受數(shù)學的簡潔美。

  教學重點

  積的乘方運算法則及其應用。

  教學難點

  冪的運算法則的靈活運用。

  教學方法

  自學─引導相結合的方法。

  同底數(shù)冪的乘法、冪的乘方、積的乘方成一個體系,研究方法類同,有前兩節(jié)課做基礎,本節(jié)課可放手讓學生自學,教師引導學生總結,從而讓學生真正理解冪的運算方法,能解決一些實際問題。

  教具準備

  投影片.

  教學過程

 、瘢岢鰡栴},創(chuàng)設情境

  [師]還是就上節(jié)課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?

  [生]它的體積應是V=(1.1×103)3cm3。

  [師]這個結果是冪的乘方形式嗎?

  [生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來看,我認為應是積的乘方才有道理。

  [師]你分析得很有道理,積的乘方如何運算呢?能不能找到一個運算法則?有前兩節(jié)課的探究經(jīng)驗,老師想請同學們自己探索,發(fā)現(xiàn)其中的奧秒。

 、颍畬胄抡n

  老師列出自學提綱,引導學生自主探究、討論、嘗試、歸納。

  出示投影片

  1.填空,看看運算過程用到哪些運算律,從運算結果看能發(fā)現(xiàn)什么規(guī)律?

 。1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

  (2)(ab)3=______=_______=a()b()

 。3)(ab)n=______=______=a()b()(n是正整數(shù))

  2.把你發(fā)現(xiàn)的規(guī)律用文字語言表述,再用符號語言表達。

  3.解決前面提到的正方體體積計算問題。

  4.積的乘方的運算法則能否進行逆運算呢?請驗證你的想法。

  5.完成課本P170例3。

  學生探究的經(jīng)過:

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。

八年級數(shù)學人教版上冊教案8

  一、教學目標

  知識與技能

  1、了解立方根的概念,初步學會用根號表示一個數(shù)的立方根.

  2、了解開立方與立方互為逆運算,會用立方運算求某些數(shù)的立方根.

  過程與方法

  1讓學生體會一個數(shù)的立方根的惟一性.

  2培養(yǎng)學生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數(shù)學的轉化思想。

  情感態(tài)度與價值觀

  通過立方根符號的引入體會數(shù)學的簡潔美。

  二、重點難點

  重點

  立方根的概念和求法。

  難點

  立方根與平方根的區(qū)別,立方根的求法

  三、學情分析

  前面已經(jīng)學過了平方根的知識,由于平方根與立方根的學習有很多相似之處,所以在教學設計上,主要還是采取類比的思想,在全面回顧平方根的基礎上,再來引導學生進行立方根知識的學習,讓學生感覺到其實立方根知識并不難,可以與平方根知識對比著學,這樣可以克服學生學習新知識的.陌生心理。在學習方法上,提倡讓學生在反思中學習,在概念的得出,歸納性質,解題之后都要進行適當?shù)姆此,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進步。

  四、教學過程設計

  教學環(huán)節(jié)問題設計師生活動備注

  情境創(chuàng)設問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應該是多少?

  設這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27.

  因為=27,所以x=3.即這種包裝箱的邊長應為3m

  歸納:

  立方根的概念:

  創(chuàng)設問題情境,引起學生學習的興趣,經(jīng)小組討論后引出概念。

  通過具體問題得出立方根的概念

  探究一:

  根據(jù)立方根的意義填空,看看正數(shù)、0、負數(shù)的立方根各有什么特點?

  因為(),所以0.125的立方根是()

  因為(),所以-8的立方根是()

  因為(),所以-0.125的立方根是()

  因為(),所以0的立方根是()

  一個正數(shù)有一個正的立方根

  0有一個立方根,是它本身

  一個負數(shù)有一個負的立方根

  任何數(shù)都有唯一的立方根

  【總結歸納】

  一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.

  探究二:

  因為所以=

  因為,所以=總結:

  利用開立方和立方互為逆運算關系,求一個數(shù)的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數(shù)的立方根,可以先求出這個負數(shù)的絕對值的立方根,再取其相反數(shù),即。

八年級數(shù)學人教版上冊教案9

  教學設計

  1、知識技能:

  (1)會進行簡單的二次根式的除法運算。

  (2)使學生能利用商的算術平方根的性質進行二次根式的化簡與運算。

  2、數(shù)學思考:在學習了二次根式乘法的基礎上進行總結對比,得出除法的運算法則。

  3、 解決問題:引導學生從特殊到一般總結歸納的方法以及類比的方法,解決數(shù)學問題。

  4、情感態(tài)度:通過本節(jié)課的學習使學生認識到事物之間是相互聯(lián)系的,相互作用的

  同步練習含答案解析

  【考點】最簡二次根式。

  【分析】判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查定義中的兩個條件(①被開方數(shù)不含分母;②被開方數(shù)不含能開得盡方的因數(shù)或因式)是否同時滿足,同時滿足的就是最簡二次根式,否則就不是。

  【解答】解:A、被開方數(shù)里含有能開得盡方的因數(shù)8,故本選項錯誤;

  B、符合最簡二次根式的`條件;故本選項正確;

  B、,被開方數(shù)里含有能開得盡方的因式x2;故本選項錯誤;

  C、被開方數(shù)里含有分母;故本選項錯誤。

  D、被開方數(shù)里含有能開得盡方的因式a2;故本選項錯誤;

  故選;B。

  【點評】本題主要考查了最簡二次根式的定義,最簡二次根式必須滿足兩個條件:

  (1)被開方數(shù)不含分母;

  (2)被開方數(shù)不含能開得盡方的因數(shù)或因式。

  課時練習含答案

  解答:選項A是二次根式乘法的運算,選項C不符合二次根式的運算條件,選項D中被開方數(shù)不能為負,故A、C、D都是錯誤的,唯有B符合二次根式除法運算法則,故選B。

  分析:正確運用二次根式除法運算法則進行計算,并能辨析運算的正誤,是本節(jié)的教學難點,學生可以通過比較分析或正確計算加以判斷。

八年級數(shù)學人教版上冊教案10

  學習目標:

  1.了解方差的定義和計算公式。

  2.理解方差概念的產(chǎn)生和形成的過程。

  3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  重點、難點:

  1.重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。

  2.難點:理解方差公式

  一.學前準備:

  問題農(nóng)科院計劃為某地選擇合適的甜玉米種子.選擇種子時,甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關心的問題.為了解甲、乙兩種甜玉米種子的相關情況,農(nóng)科院各用10塊自然條件相同的試驗田進行試驗,得到各試驗田每公頃的產(chǎn)量(單位:t)如表所示。

  甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41

  乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49

  根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應該選擇哪種甜玉米種子呢?

  來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

  意義:用來衡量一批數(shù)據(jù)的波動大小。

  在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。

  二、歸納:

  (1)研究離散程度可用

  (2)方差應用更廣泛衡量一組數(shù)據(jù)的波動大小

  (3)方差主要應用在平均數(shù)相等或接近時

  (4)方差大波動大,方差小波動小,一般選波動小的

  例題:在一次芭蕾舞比賽中,甲乙兩個芭蕾舞團都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:

  甲163 164 164 165 165 166 166 167

  乙163 165 165 166 166 167 168 168

  哪個芭蕾舞團的`女演員的身高比較整齊?

  三.自我檢查:

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

  2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S,所以確定去參加比賽。

  3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

八年級數(shù)學人教版上冊教案11

  一、內容和內容解析

  1、內容

  正比例函數(shù)的概念。

  2、內容解析

  一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎,了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。

  對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的.值與之對應,這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構建的函數(shù)模型中,函數(shù)和自變量每一對對應值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。

  本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關系式,觀察比較概括出這些函數(shù)關系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。

  基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念。

  二、目標和目標解析

  1、目標

  (1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;

 。2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。

  2、目標解析

  達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。

  達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。

  三、教學問題診斷分析

  正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數(shù)概念的理解關鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度。

  因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程。

八年級數(shù)學人教版上冊教案12

  一、教材分析教材的地位和作用:

  本節(jié)內容是第一課時《軸對稱》,本節(jié)立足于學生已有的生活經(jīng)驗和數(shù)學活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認識軸對稱的特征;同時本節(jié)內容與圖形的三種變換操作(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質及后面學習等腰三角形和圓等有關知識奠定基礎。同時這一節(jié)也是聯(lián)系數(shù)學與生活的橋梁。

  二、學情分析

  八年級學生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達能力,這節(jié)課是在學生學習了“全等三角形”相關內容之后安排的一節(jié)課,學生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實例和動手實踐,讓學生自己去發(fā)現(xiàn)和總結軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實可行的。

  三、教學目標及重點、難點的確定

  根據(jù)新課程標準、教材內容特點、和學生已有的認知結構、心理特征,我確定本節(jié)教學目標、重點、難點如下:

  (一)教學目標:

  1、知識技能

  (1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

  (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.

  (3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.

  2、過程與方法目標

  經(jīng)歷“觀察——比較——操作——概括——總結一應用”的學習過程,培養(yǎng)學生的動手實踐能力、抽象思維和語言表達能力.

  3、情感、態(tài)度與價值觀

  通過對生活中數(shù)學問題的探究,進一步提高學生學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,培養(yǎng)學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。

  (二)教學重點:軸對稱圖形和軸對稱的有關概念.

  (三)教學難點:軸對稱圖形與軸對稱的聯(lián)系、區(qū)別

  四、教法和學法設計

  本節(jié)課根據(jù)教材內容的特點和八年級學生的知識結構和心理特征。我選擇的:

  教法策略采用以直觀演示法和實驗發(fā)現(xiàn)法為主,設疑誘導法為輔。教學中教學中通過豐富的圖片展示,創(chuàng)設出問題情景,誘導學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發(fā)學生探求知識的欲望,逐步推導歸納得出結論,使學生始終處于主動探索問題的積極狀態(tài),使不同層次學生的知識水平得到恰當?shù)陌l(fā)展和提高。

  學法策略:讓學生在“觀察----比較——操作——概括——檢驗——應用”的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。

  輔助策略我利用多媒體課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率

  五、說程序設計:

  新的課程標準指出學生的學習內容應該是現(xiàn)實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數(shù)學活動。為了達到預期的教學目標,我對整個教學過程進行了設計。

  (一)、觀圖激趣、設疑導入。

  出示圖片,設計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“我們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

  [設計意圖]以興趣為先導,創(chuàng)設學生喜聞樂見的故事情景,激發(fā)了學生濃厚的學習興趣。

  (二)、實踐探索、感悟特征.

  活動一(課件演示)觀察這些圖形有什么特點?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當?shù)匾龑В寣W生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

  為了進一步認識軸對稱圖形的特點又出示了一組練習

  (練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

  [設計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的`,有可能是水平的或傾斜的。

  (練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養(yǎng)了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發(fā)了學生的學習興趣,而且也拓展了學生的知識面。

  (三)、動手操作、再度探索新知。

  將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養(yǎng)學生的動手能力,從而引出軸對稱概念。

  再次引導學生討論、歸納得出軸對稱的概念……之后再結合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結合圖形加以認識。

  (四)、鞏固練習、升華新知。

  出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,在這組練習中讓學生動手、動口、動眼、動腦,充分調動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學生自己歸納,然后用多媒體展示。

  (課件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系

  (五)、綜合練習、發(fā)展思維。

  1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

  2、判斷:

  生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。

  (1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

  0123456789abcdefgh

  3、像這樣寫法的漢字哪些是軸對稱圖形?

  口工用中由日直水清甲

  (這幾道題的練習做到了知識性、技能性、思想性和藝術性溶為一體。這樣設計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發(fā)了學生的學習興趣,又讓學生感到數(shù)學就在自己的身邊)

  (六)歸納小結、布置作業(yè)

  [設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。作業(yè)布置要有層次,照顧學生個體差異使不同的人在數(shù)學上獲得不同的發(fā)展!

  六、設計說明

  這節(jié)課,我依據(jù)課程標準、教材特點、遵循學生的認知規(guī)律。通過六個環(huán)節(jié)的教學設計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關于直線成軸對稱兩個概念,指導學生操作、觀察、引導概括,獲取新知;同時注重培養(yǎng)學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節(jié)課的理解和說明。

八年級數(shù)學人教版上冊教案13

  【教學目標】

  知識與技能

  會推導平方差公式,并且懂得運用平方差公式進行簡單計算。

  過程與方法

  經(jīng)歷探索特殊形式的多項式乘法的過程,發(fā)展學生的符號感和推理能力,使學生逐漸掌握平方差公式。

  情感、態(tài)度與價值觀

  通過合作學習,體會在解決具體問題過程中與他人合作的重要性,體驗數(shù)學活動充滿著探索性和創(chuàng)造性。

  【教學重難點】

  重點:平方差公式的推導和運用,以及對平方差公式的幾何背景的了解。

  難點:平方差公式的應用。

  關鍵:對于平方差公式的推導,我們可以通過教師引導,學生觀察、總結、猜想,然后得出結論來突破;抓住平方差公式的本質特征,是正確應用公式來計算的關鍵。

  【教學過程】

  一、創(chuàng)設情境,故事引入

  【情境設置】教師請一位學生講一講《狗熊掰棒子》的故事

  【學生活動】1位學生有聲有色地講述著《狗熊掰棒子》的故事,其他學生認真聽著,不時補充。

  【教師歸納】聽了這則故事之后,同學們應該懂得這么一個道理,學習千萬不能像狗熊掰棒子一樣,前面學,后面忘,那么,上節(jié)課我們學習了什么呢?還記得嗎?

  【學生回答】多項式乘以多項式。

  【教師激發(fā)】大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。

  【問題牽引】計算:

 。1)(x+2)(x—2);(2)(1+3a)(1—3a);

  (3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

  做完之后,觀察以上算式及運算結果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個例子驗證你的發(fā)現(xiàn)。

  【學生活動】分四人小組,合作學習,獲得以下結果:

 。1)(x+2)(x—2)=x2—4;

 。2)(1+3a)(1—3a)=1—9a2;

  (3)(x+5y)(x—5y)=x2—25y2;

 。4)(y+3z)(y—3z)=y2—9z2。

  【教師活動】請一位學生上臺演示,然后引導學生仔細觀察以上算式及其運算結果,尋找規(guī)律。

  【學生活動】討論

  【教師引導】剛才同學們從上述算式中找到了這一組整式乘法的結果的規(guī)律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學們所歸納出來的.特殊多項式相乘的規(guī)律呢?

  【學生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

  用語言描述就是:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

  【教師活動】表揚學生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。

  二、范例學習,應用所學

  【教師講述】

  平方差公式的運用,關鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了,F(xiàn)在大家來看看下面幾個例子,從中得到啟發(fā)。

  例1:運用平方差公式計算:

  (1)(2x+3)(2x—3);

 。2)(b+3a)(3a—b);

 。3)(—m+n)(—m—n)。

  《乘法公式》同步練習

  二、填空題

  5、冪的乘方,底數(shù)______,指數(shù)______,用字母表示這個性質是______。

  6、若32×83=2n,則n=______。

  《乘法公式》同步測試題

  25、利用正方形的面積公式和梯形的面積公式即可求解;

  根據(jù)所得的兩個式子相等即可得到。

  此題考查了平方差公式的幾何背景,根據(jù)正方形的面積公式和梯形的面積公式得出它們之間的關系是解題的關鍵,是一道基礎題。

  26、由等式左邊兩數(shù)的底數(shù)可知,兩底數(shù)是相鄰的兩個自然數(shù),右邊為兩底數(shù)的和,由此得出規(guī)律;

  等式左邊減數(shù)的底數(shù)與序號相同,由此得出第n個式子;

八年級數(shù)學人教版上冊教案14

  教學目標

  1.知識與技能

  領會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價值觀

  培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

  重、難點與關鍵

  1.重點:理解完全平方公式因式分解,并學會應用.

  2.難點:靈活地應用公式法進行因式分解.

  3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的

  教學方法

  采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內容.

  教學過程

  一、回顧交流,導入新知

  【問題牽引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知識遷移】

  2.計算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的.思想,尋找因式分解的規(guī)律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【學生活動】從逆向思維的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例學習,應用所學

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路點撥】根據(jù)完全平方式的定義,解此題時應分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應求出a的值,即可求出a3.

  三、隨堂練習,鞏固深化

  課本P170練習第1、2題.

  【探研時空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、課堂總結,發(fā)展?jié)撃?/p>

  由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在運用公式因式分解時,要注意:

  (1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

  五、布置作業(yè),專題突破

八年級數(shù)學人教版上冊教案15

  教學目標:

  情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。

  能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。

  認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

  教學重點、難點

  重點:等腰梯形性質的探索;

  難點:梯形中輔助線的添加。

  教學課件:

  powerpoint演示文稿

  教學方法:

  啟發(fā)法

  學習方法:

  討論法、合作法、練習法

  教學過程:

 。ㄒ唬⿲

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習:下列圖形中哪些圖形是梯形?(投影)

  4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

  (二)等腰梯形性質的探究

  探究性質一

  思考:在等腰梯形中,如果將一腰ab沿ad的方向平移到de的位置,那么所得的△dec是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

  如圖,等腰梯形abcd中,ad∥bc,ab=cd。求證:∠b=∠c

  想一想:等腰梯形abcd中,∠a與∠d是否相等?為什么?

  等腰梯形性質:等腰梯形的'同一條底邊上的兩個內角相等。

  操練

 。1)如圖,等腰梯形abcd中,ad∥bc,ab=cd,∠b=60o,bc=10cm,ad=4cm,則腰ab=cm。(投影)

 。2)如圖,在等腰梯形abcd中,ad∥bc,ab=cd,de∥ac,交bc的延長線于點e,ca平分∠bcd,求證:∠b=2∠e.(投影)

  探究性質二

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

  如上圖,等腰梯形abcd中,ad∥bc,ab=cd,ac、bd相交于o,求證:ac=bd。(投影)

  等腰梯形性質:等腰梯形的兩條對角線相等。

  ?探究性質三

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質:同以底上的兩個內角相等,對角線相等

  (三)質疑反思、小結

  讓學生回顧本課教學內容,并提出尚存問題;

  學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

【八年級數(shù)學上冊教案】相關文章:

數(shù)學八年級上冊教案03-02

初中數(shù)學八年級上冊教案02-06

八年級上冊數(shù)學函數(shù)教案03-09

八年級上冊數(shù)學教案01-13

八年級數(shù)學上冊教案02-27

八年級數(shù)學上冊教案06-08

八年級上冊數(shù)學優(yōu)秀教案01-23

數(shù)學八年級上冊教案15篇03-02

數(shù)學八年級上冊教案(精選15篇)09-03

八年級數(shù)學上冊的教案07-09