(優(yōu)秀)數(shù)學(xué)建模論文15篇
無(wú)論是身處學(xué)校還是步入社會(huì),大家總少不了接觸論文吧,論文是我們對(duì)某個(gè)問(wèn)題進(jìn)行深入研究的文章。那么一般論文是怎么寫的呢?下面是小編收集整理的數(shù)學(xué)建模論文,僅供參考,大家一起來(lái)看看吧。
數(shù)學(xué)建模論文1
建模是一種重要的數(shù)學(xué)思想,是數(shù)學(xué)認(rèn)知活動(dòng)的重要內(nèi)容。一切數(shù)學(xué)概念、公式與定理以及各種議程等等,都可以稱為數(shù)學(xué)模型。在數(shù)學(xué)認(rèn)知活動(dòng)中,教師要注重引導(dǎo)學(xué)生通過(guò)分析、猜想、提取與概括等來(lái)自主地構(gòu)建數(shù)學(xué)模型。這樣,學(xué)生不僅能夠深刻地理解與掌握基本的數(shù)學(xué)知識(shí),更為重要的是可以掌握建模這一重要數(shù)學(xué)思想,從而有利于學(xué)生知識(shí)與素養(yǎng)的全面提升。讓學(xué)生學(xué)會(huì)建模這是小學(xué)數(shù)學(xué)教學(xué)的重要課題。筆者現(xiàn)結(jié)合具體的教學(xué)實(shí)踐對(duì)數(shù)學(xué)建模策略淺談如下幾點(diǎn)體會(huì)。
一、激發(fā)興趣,趣味教學(xué)
興趣是一切認(rèn)知活動(dòng)的基礎(chǔ),是教學(xué)成功的秘訣。只有激起學(xué)生對(duì)認(rèn)知對(duì)象濃厚的興趣,學(xué)生才能產(chǎn)生積極的學(xué)習(xí)行為,把學(xué)習(xí)當(dāng)做一種精神上的享受,這樣才能取得事半功倍的效果,而且還可以讓學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,形成持久的學(xué)習(xí)興趣。因此,培養(yǎng)學(xué)生建模能力的一個(gè)有效策略就是要激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)科興趣,對(duì)建模的熱情。因此在具體的教學(xué)中,要避免無(wú)視學(xué)生學(xué)情的照本宣科,而是要將數(shù)學(xué)學(xué)習(xí)與現(xiàn)實(shí)生活結(jié)合起來(lái),以學(xué)生所熟悉的生活事物與生活實(shí)例來(lái)引入新知,滲透建模思想,這樣可以大大增強(qiáng)教學(xué)的親切感與形象性,自然可以激起學(xué)生參與的激情與思考的積極性。如在學(xué)習(xí)加法交換律時(shí),教師就可以以朝三暮四的成語(yǔ)故事來(lái)引入,將原本抽象的理論知識(shí)寓于富有趣味的生活故事之中,這樣可以避免以往機(jī)械的講述, 實(shí)現(xiàn)寓教于樂(lè),自然就可以激起學(xué)生強(qiáng)烈的`學(xué)習(xí)熱情與學(xué)習(xí)動(dòng)機(jī),從而引導(dǎo)學(xué)生展開主動(dòng)而快樂(lè)的學(xué)習(xí)。
二、巧妙設(shè)問(wèn),主動(dòng)探究
學(xué)起于思,思源于疑。疑問(wèn)是思維的開端, 創(chuàng)新的基石, 是打開學(xué)生探究之門的鑰匙。在建模教學(xué)中同樣如此, 一個(gè)巧妙的問(wèn)題,不僅可以激發(fā)學(xué)生的學(xué)習(xí)熱情,誘發(fā)學(xué)生探究動(dòng)機(jī),還可以將學(xué)生的思維引向深處,從而使學(xué)生的探究更有深度與廣度, 在學(xué)生的積極思考與主動(dòng)探究來(lái)圓滿地完成教學(xué)任務(wù)。為此在教學(xué)中,要盡量避免沒(méi)有懸念的教學(xué),而是要善于運(yùn)用提問(wèn)藝術(shù),拋出富有啟發(fā)性與探索性的問(wèn)題,一石激起千層浪,這樣更能引導(dǎo)學(xué)生展開主動(dòng)探究。如在學(xué)習(xí)平均數(shù)時(shí),我首先讓學(xué)生思考,班內(nèi)兩個(gè)小組參加學(xué)校的比賽,其中第一小組5個(gè)人,第二小組8個(gè)人, 哪個(gè)小組的水平高一些呢? 這樣的問(wèn)題與學(xué)生的現(xiàn)實(shí)生活密切相關(guān), 與教學(xué)內(nèi)容緊密相連,具有很強(qiáng)的趣味性與針對(duì)性,更能引發(fā)學(xué)生的學(xué)習(xí)熱情與主動(dòng)思考。通過(guò)思考后,學(xué)生提出了一些解決方法,比較總分的高低,看最高分在哪個(gè)小組等。但隨后學(xué)生又發(fā)現(xiàn)這些方法存在一定的局限性, 并不能客觀反映各小組的實(shí)際情況。學(xué)生初步建模失敗,此時(shí)就需要教師因勢(shì)利導(dǎo),給予必要的啟發(fā)與誘導(dǎo),進(jìn)而引入平均數(shù)的建模,這樣就可以實(shí)現(xiàn)學(xué)生的有效探究, 更加利于學(xué)生對(duì)此知識(shí)點(diǎn)的本質(zhì)性理解。
三、深入本質(zhì),深化理解
學(xué)生的認(rèn)知規(guī)律是由形象到抽象再到形象,這一特點(diǎn)決定了在學(xué)生建模的過(guò)程中,要加強(qiáng)引導(dǎo),深入本質(zhì)。如植樹問(wèn)題是小學(xué)數(shù)學(xué)教學(xué)的一個(gè)重點(diǎn)也是難點(diǎn), 而要突出重點(diǎn)突破難點(diǎn),就必須要讓學(xué)生深入本質(zhì)的理解,這樣學(xué)生才能靈活地加以運(yùn)用, 才能掌握數(shù)學(xué)建模這一重要的數(shù)學(xué)思想。經(jīng)過(guò)師生之間的互動(dòng)探究得出不封閉路的植樹棵數(shù)=間隔數(shù)+1后,再次提出問(wèn)題引導(dǎo)學(xué)生思考:(1)道路長(zhǎng)度是100米,每隔5米種1棵樹,有多少個(gè)間隔?可以種多少棵樹? (2)如果間隔數(shù)是30個(gè),可種多少棵樹? 間隔數(shù)是n個(gè), 可種多少棵樹?(3)如果路的長(zhǎng)度改變,而其他條件不變,植樹棵數(shù)=間隔數(shù)+1這個(gè)公式是否成立? (4)思考為什么植樹棵數(shù)不等于間隔數(shù)而是等于間隔數(shù)+1? 這樣的幾個(gè)問(wèn)題層層遞進(jìn),由特殊到一般,由抽象到弄錯(cuò),步步深入,可以將學(xué)生的認(rèn)知由形象引向抽象再到形象, 從而達(dá)到學(xué)生對(duì)知識(shí)的深刻理解與靈活掌握, 親歷數(shù)學(xué)建模全過(guò)程, 實(shí)現(xiàn)對(duì)這一基本數(shù)學(xué)思想的真正內(nèi)化。
四、回歸生活,提升能力
數(shù)學(xué)學(xué)科源于生活,同時(shí)又服務(wù)于生活,與生活有著千絲萬(wàn)縷的聯(lián)系。這一學(xué)科特征決定了在數(shù)學(xué)建模教學(xué)中不僅要重視從現(xiàn)實(shí)生活中來(lái)提煉與抽象出數(shù)學(xué)模型,同時(shí)還要注重將數(shù)學(xué)模型運(yùn)用于生活實(shí)踐中,回歸生活,指導(dǎo)實(shí)踐,這樣才能真正實(shí)現(xiàn)學(xué)以致用,促進(jìn)學(xué)生數(shù)學(xué)素養(yǎng)與能力的整體提高。如關(guān)于植樹問(wèn)題,在學(xué)生抽象出數(shù)學(xué)模型,總結(jié)出公式以后,為了提升學(xué)生的認(rèn)知,促進(jìn)學(xué)生將知識(shí)轉(zhuǎn)化為能力,我們還要引導(dǎo)學(xué)生能夠運(yùn)用抽象出的模型來(lái)解決現(xiàn)實(shí)問(wèn)題。如廣場(chǎng)上的大鐘6點(diǎn)敲響6下,所用時(shí)間是10秒,那么12點(diǎn)時(shí)敲響l2下所用的時(shí)間是多少? 這樣將學(xué)生所總結(jié)出的模型運(yùn)用于現(xiàn)實(shí)生活問(wèn)題的解決之中,將學(xué)生思維的全過(guò)程展現(xiàn)出來(lái)。這樣就可以避免學(xué)生對(duì)模型的機(jī)械套用,而是遵循了學(xué)生從現(xiàn)實(shí)生活提取數(shù)學(xué)素材抽象出數(shù)學(xué)模型再到將數(shù)學(xué)模型還原于具體的生活問(wèn)題。這樣更能加深學(xué)生對(duì)數(shù)學(xué)模型的理解與認(rèn)知,使學(xué)生已經(jīng)建立的數(shù)學(xué)模型得以不斷擴(kuò)展與延伸,才能促進(jìn)學(xué)生對(duì)模型的內(nèi)化,實(shí)現(xiàn)學(xué)生的真正理解與靈活運(yùn)用,提升學(xué)生的能力;更為重要的是可以讓學(xué)生真切地感受到數(shù)學(xué)建模的實(shí)用性與必要性,促進(jìn)學(xué)生掌握建模這一最基本、最重要的數(shù)學(xué)思想。
總之,數(shù)學(xué)建模是數(shù)學(xué)學(xué)習(xí)的重要方法,這是新課改的必要要求, 是數(shù)學(xué)學(xué)科學(xué)習(xí)的內(nèi)在規(guī)律, 同時(shí)也是由學(xué)生學(xué)習(xí)特點(diǎn)所決定的。在具體的教學(xué)中,教師要重視培養(yǎng)學(xué)生數(shù)學(xué)建模能力,不斷增強(qiáng)學(xué)生的應(yīng)用意識(shí),讓學(xué)生親身參與到概念與定理的形成過(guò)程中,提高學(xué)生分析問(wèn)題與解決問(wèn)題的能力, 激活學(xué)生的思維,激勵(lì)學(xué)生創(chuàng)新,從而讓學(xué)生在主動(dòng)思考與探究中來(lái)掌握建模這一重要數(shù)學(xué)思想與方法,促進(jìn)學(xué)生數(shù)學(xué)知識(shí)、素養(yǎng)與綜合能力的整體提高。
數(shù)學(xué)建模論文2
1.數(shù)學(xué)建模對(duì)學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實(shí)際問(wèn)題,很多都是當(dāng)前社會(huì)比較關(guān)注的熱點(diǎn)問(wèn)題,比如開放性小區(qū)的建立,人工智能機(jī)器人在工作中的應(yīng)用,這些問(wèn)題開放性比較強(qiáng),有明確的目的和要求,但它沒(méi)有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)終于派上了用場(chǎng)。數(shù)學(xué)建模課程會(huì)結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計(jì)》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會(huì)經(jīng)常涉及到物理,工程,經(jīng)濟(jì),金融,農(nóng)林等各個(gè)領(lǐng)域各個(gè)學(xué)科,從不同的學(xué)科中找最熱門最真實(shí)的案例進(jìn)行教學(xué),這要求學(xué)生有很強(qiáng)的自學(xué)能力,要不得學(xué)習(xí)新知識(shí),新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識(shí)把自己學(xué)科的專業(yè)知識(shí)轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢(shì),以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對(duì)學(xué)生的知識(shí)體系起到了完善的作用。在整個(gè)競(jìng)賽中從模型建立與求解到寫作,都是由學(xué)生獨(dú)立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競(jìng)賽是由三個(gè)人組成一個(gè)小團(tuán)隊(duì)共同處理一個(gè)問(wèn)題,在這個(gè)團(tuán)隊(duì)中每個(gè)人都各有分工,有的人擅長(zhǎng)建立模型,有的人擅長(zhǎng)計(jì)算機(jī)編程求解模型,有的人擅長(zhǎng)寫作,這三個(gè)人缺一不可,任何一個(gè)人都發(fā)揮著舉足輕重的作用。通常我們還會(huì)設(shè)一個(gè)隊(duì)長(zhǎng)能協(xié)調(diào)隊(duì)員之間的關(guān)系和對(duì)題目的把控。每個(gè)人都有不同的性格,能力,學(xué)識(shí),知識(shí)結(jié)構(gòu),在做題的過(guò)程中會(huì)產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過(guò)程中,算法的`選取,編程語(yǔ)言的選取,寫作的過(guò)程中都會(huì)有很多的不同,所以每個(gè)成員都要有團(tuán)隊(duì)精神、相互信任、相互溝通、相互尊重、取長(zhǎng)補(bǔ)短、充分發(fā)揮集體的力量共同完成一個(gè)項(xiàng)目。同時(shí)每年無(wú)論在培訓(xùn)還是正式比賽過(guò)程中由于高強(qiáng)度的腦力活動(dòng),強(qiáng)大的心理壓力以及隊(duì)員之間的不和睦都會(huì)造成中途退賽,這樣無(wú)疑是最可惜的。所以,在競(jìng)賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和團(tuán)隊(duì)合作精神,還培養(yǎng)了大家的心理承受能力,強(qiáng)大的意志力以及與他人溝通交往的能力,是對(duì)自己綜合素質(zhì)的一個(gè)提高,對(duì)未來(lái)考研、出國(guó)、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的綜合能力
通過(guò)在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問(wèn)題解決問(wèn)題的能力等綜合素質(zhì),同時(shí)還培養(yǎng)了他們應(yīng)用計(jì)算機(jī)去處理各種問(wèn)題的科技能力。他們學(xué)會(huì)了各種軟件、語(yǔ)言,很多同學(xué)會(huì)數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)以及人工智能,這些都是未來(lái)科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動(dòng)力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識(shí)的學(xué)習(xí),更重要的是理論與實(shí)踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實(shí)踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實(shí)的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進(jìn)培養(yǎng)模式和方法,爭(zhēng)取通過(guò)數(shù)學(xué)建模平臺(tái)使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻(xiàn):
[1]周瑋.融數(shù)學(xué)實(shí)驗(yàn)于高職數(shù)學(xué)教學(xué)的實(shí)踐與研究[J].數(shù)學(xué)教育學(xué)報(bào),20xx,19(6):80-81.
[2]韋程?hào)|.數(shù)學(xué)建模能力培養(yǎng)方法研究[M].北京:科學(xué)出版社,20xx.
數(shù)學(xué)建模論文3
1在高職數(shù)學(xué)課堂教學(xué)中滲透建模思想是必要的
我國(guó)高等職業(yè)技術(shù)教育的目標(biāo)是培養(yǎng)社會(huì)主義現(xiàn)代化建設(shè)需要的一線高技能型人才,因此培養(yǎng)學(xué)生能力至關(guān)重要。數(shù)學(xué)教育在人才培養(yǎng)中有著不可替代的重要作用,高速發(fā)展的現(xiàn)代科技對(duì)人才的數(shù)學(xué)素質(zhì)、應(yīng)用數(shù)學(xué)的意識(shí)與能力已經(jīng)提出了更高的要求,F(xiàn)在高職學(xué)院數(shù)學(xué)教學(xué)已不太適應(yīng)社會(huì)發(fā)展的需求,需要進(jìn)行教學(xué)改革。數(shù)學(xué)建模對(duì)培養(yǎng)學(xué)生的思維、提高數(shù)學(xué)應(yīng)用意識(shí)、培養(yǎng)數(shù)學(xué)素養(yǎng)等方面起著重要的作用,在數(shù)學(xué)教學(xué)改革中滲透數(shù)學(xué)建模思想是非常必要的,也是可行的。
傳統(tǒng)的數(shù)學(xué)讓許多學(xué)生感覺(jué)高深莫測(cè)、枯燥無(wú)味的原因之一,是學(xué)生很難把數(shù)學(xué)知識(shí)和實(shí)際問(wèn)題聯(lián)系在一起。在高職學(xué)院數(shù)學(xué)課堂教學(xué)中滲透數(shù)學(xué)建模思想、方法,把數(shù)學(xué)知識(shí)與數(shù)學(xué)應(yīng)用有機(jī)的結(jié)合在一起,能增強(qiáng)數(shù)學(xué)學(xué)習(xí)的目的性,加強(qiáng)學(xué)生的應(yīng)用意識(shí),有利于提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,更好的學(xué)習(xí)、掌握、應(yīng)用數(shù)學(xué)的思想、方法,提高學(xué)生的綜合素質(zhì)。如何在課堂教學(xué)中滲透數(shù)學(xué)建模思想是非常值得研究的。
2關(guān)于在課堂教學(xué)中滲透建模思想的研究
建立數(shù)學(xué)模型就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過(guò)程,是把錯(cuò)綜復(fù)雜的實(shí)際問(wèn)題簡(jiǎn)化、抽象為合理的數(shù)學(xué)結(jié)構(gòu)的過(guò)程,是運(yùn)用數(shù)學(xué)的語(yǔ)言、方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫并“解決”實(shí)際問(wèn)題的一種強(qiáng)有力的數(shù)學(xué)手段。通常數(shù)學(xué)建模的過(guò)程包括:模型準(zhǔn)備、模型假設(shè)、模型建立、模型求解、模型分析、模型檢驗(yàn)、修正及模型的應(yīng)用與推廣等。在日常的數(shù)學(xué)課堂教學(xué)中完整展示以上過(guò)程是有難度的。我們不妨把數(shù)學(xué)建模分成兩個(gè)模塊。第一部分是將現(xiàn)實(shí)生活中的實(shí)際問(wèn)題的內(nèi)在規(guī)律抽象為數(shù)學(xué)問(wèn)題,構(gòu)建數(shù)學(xué)模型;第二部分是求解數(shù)學(xué)模型檢驗(yàn)、修正、應(yīng)用。顯然傳統(tǒng)數(shù)學(xué)課程教學(xué)側(cè)重于求解,然而實(shí)際應(yīng)用中模型的構(gòu)建是十分關(guān)鍵、同時(shí)也是十分困難的一步。同時(shí)在構(gòu)建數(shù)學(xué)模型中數(shù)學(xué)語(yǔ)言與實(shí)際問(wèn)題之間的“雙向”翻譯也特別重要,如果不能將實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言翻譯出來(lái),那么將無(wú)法完成數(shù)學(xué)模型的建立。我們可以充分利用微積分中蘊(yùn)藏的數(shù)學(xué)模型題材,突破這個(gè)難點(diǎn),比如定積分概念的教學(xué)。下面以定積分概念的教學(xué)為例,探討如何將數(shù)學(xué)建模思想滲透到高職院校數(shù)學(xué)課堂教學(xué)之中。
3《定積分概念》的教學(xué)設(shè)計(jì)
定積分在微積分學(xué)中占有非常重要的地位。正確、深刻的理解、掌握定積分的概念,有助于運(yùn)用定積分的微元思想解決實(shí)際問(wèn)題,達(dá)到學(xué)以致用的目的。
傳統(tǒng)定積分概念授課方式是照講解兩個(gè)引例,即引例1:求曲邊梯形面積;引例2:求作變速直線運(yùn)動(dòng)物體的位移,通過(guò)引例的結(jié)論過(guò)度到定積分的概念。當(dāng)前高職學(xué)生的數(shù)學(xué)基礎(chǔ)普遍較差,難以接受用大量數(shù)學(xué)語(yǔ)言講解的引例,特別是在校高職生普遍對(duì)數(shù)學(xué)語(yǔ)言不太熟悉,對(duì)定積分這樣大段落數(shù)學(xué)語(yǔ)言表述的概念更覺(jué)得難以理解。如何引導(dǎo)高職學(xué)生學(xué)習(xí)掌握定積分這個(gè)重要的概念?針對(duì)當(dāng)前高職學(xué)生現(xiàn)狀,為突破教學(xué)重難點(diǎn),筆者選擇把課堂教學(xué)重點(diǎn)放在引例1上,滲透數(shù)學(xué)建模的思想方法,將引例一講清楚、講透徹。引例1的講解是采用螺旋式的方法:分步講授,逐層遞進(jìn)。分三部分逐層講解,具體如下:
第一步:按照構(gòu)建數(shù)學(xué)模型(模塊1)的思路講解。①提出具體問(wèn)題:求自然界中任意一片樹葉的面積;②通過(guò)對(duì)具體問(wèn)題的分析討論,抽象出主要問(wèn)題:如何求曲邊梯形的面積;③提出初步的解決方案:分割、近似。④提出問(wèn)題:如何提高近似程度。分析得出結(jié)論:分割越細(xì),近似程度越好。將上述過(guò)程小結(jié)為“分割、近似、求和”。實(shí)際教學(xué)中,這一步學(xué)生都能夠理解、掌握。
第二步:采用螺旋式的.講解方法,對(duì)第一步中得到的結(jié)論細(xì)化。用數(shù)學(xué)語(yǔ)言表述“分割、近似、求和”等步驟。如:在“分割”中用插人分點(diǎn)的方式分割曲邊梯形,逐步使用數(shù)學(xué)語(yǔ)言表述出學(xué)生已經(jīng)認(rèn)同的結(jié)論,學(xué)生比較容易接受一些。
進(jìn)一步討論第一步的結(jié)論:分割越細(xì),近似程度越好。借助計(jì)算機(jī)輔助教學(xué),取不同的數(shù)值,引導(dǎo)學(xué)生觀察數(shù)值變化趨勢(shì)。運(yùn)用極限將普通的近似計(jì)算進(jìn)行升華,用和式的極限解決曲邊梯形面積的計(jì)算問(wèn)題·在此,學(xué)生不僅解決了實(shí)際生活中的問(wèn)題,還能更深刻的理解、運(yùn)用極限運(yùn)算。
需要注意的是,為了突出重點(diǎn),小區(qū)間的劃分方式、毛的取法等問(wèn)題放在第三步中解決。
第三步:完整的用數(shù)學(xué)語(yǔ)言將求曲邊梯形的過(guò)程敘述一遍,并分析、探討小區(qū)間的劃分方式、毛,的取法對(duì)運(yùn)算結(jié)果的影響。最后提出問(wèn)題:上述解決問(wèn)題的方法能應(yīng)用于其它問(wèn)題上嗎,順利進(jìn)人對(duì)引例2的講解。這正對(duì)應(yīng)著數(shù)學(xué)建模第2模塊中的檢驗(yàn)、修正、應(yīng)用。數(shù)學(xué)模型的檢驗(yàn)、修正、應(yīng)用在解決實(shí)際問(wèn)題時(shí)非常重要,但在傳統(tǒng)數(shù)學(xué)教學(xué)中常常被弱化。
通過(guò)對(duì)二個(gè)引例的分析、討論得到的結(jié)論,最后抽象出的定積分概念不再讓學(xué)生感到畏懼。在教學(xué)中通過(guò)滲透建立數(shù)學(xué)模型思想、方法,幫助學(xué)生更好地掌握了定積分的概念。學(xué)生對(duì)那些大段的數(shù)學(xué)語(yǔ)言不再那么陌生,降低了學(xué)習(xí)難度,消除學(xué)生心中對(duì)學(xué)習(xí)高等數(shù)學(xué)的恐懼,同時(shí)將數(shù)學(xué)思維的方式、方法以潤(rùn)物細(xì)無(wú)聲的方式植人學(xué)生的大腦中,為學(xué)生今后的發(fā)展打好基礎(chǔ)。通過(guò)對(duì)比試驗(yàn)也證明這種教學(xué)模式的教學(xué)效果優(yōu)于傳統(tǒng)教學(xué)方式。
數(shù)學(xué)建模論文4
[摘要]在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
[關(guān)鍵詞]大學(xué)數(shù)學(xué);數(shù)學(xué)建模;數(shù)學(xué)素養(yǎng);學(xué)習(xí)能力;創(chuàng)新能力
一、大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想滲透的意義
數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
二、深入挖掘教學(xué)內(nèi)容,滲透數(shù)學(xué)建模思想
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
。ㄒ唬╅]區(qū)間連續(xù)函數(shù)的性質(zhì)
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
。ǘ┒ǚe分
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的.征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
。ㄈ┳钪祮(wèn)題
在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
。ㄋ模┪⒎址匠
微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
。ㄎ澹┚仃
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
參考文獻(xiàn):
[1]許小芳.對(duì)在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想的研究[J].甘肅聯(lián)合大學(xué)學(xué)報(bào)(自然科學(xué)版),20xx,25(S2):33-36.
[2]袁月定.在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想的策略研究[J].考試周刊,20xx,21(69):55-57.
數(shù)學(xué)建模論文5
一、引言
隨著我國(guó)高等教育的發(fā)展,高校招生規(guī)模越來(lái)越大,而生源質(zhì)量較低,特別是獨(dú)立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認(rèn)為理論性太強(qiáng),與實(shí)際脫節(jié)嚴(yán)重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,所以,進(jìn)行數(shù)學(xué)教學(xué)改革勢(shì)在必行。數(shù)學(xué)建?膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,通過(guò)數(shù)模方法對(duì)實(shí)際問(wèn)題進(jìn)行巧妙處理,讓學(xué)生體會(huì)到數(shù)學(xué)不僅能傳播理論知識(shí)和求解一些數(shù)學(xué)問(wèn)題,還可將其應(yīng)用到實(shí)際問(wèn)題中,讓學(xué)生看到一些實(shí)際模型的來(lái)龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個(gè)極好載體,而且能充分考驗(yàn)學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟(jì)的團(tuán)隊(duì)合作精神和協(xié)調(diào)組織能力,以及誠(chéng)信意識(shí)和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團(tuán)隊(duì)合作精神對(duì)于獨(dú)立學(xué)院學(xué)生將來(lái)進(jìn)入社會(huì)十分重要,這也是衡量獨(dú)立學(xué)院辦學(xué)成功與否的一個(gè)方面。因此,獨(dú)立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達(dá)到本科生應(yīng)具備的理論基礎(chǔ),又要有相對(duì)突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨(dú)立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
二、數(shù)學(xué)模型融入數(shù)學(xué)課堂教學(xué)的必要性
。ㄒ唬┤瞬排囵B(yǎng)創(chuàng)新的需要
根據(jù)獨(dú)立學(xué)院人才培養(yǎng)目標(biāo)和實(shí)際情況,有針對(duì)性的加大基礎(chǔ)課和實(shí)踐環(huán)節(jié)教學(xué)的比重,側(cè)重于實(shí)踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實(shí)驗(yàn)、實(shí)踐教學(xué)內(nèi)容,加強(qiáng)與社會(huì)實(shí)體的聯(lián)系。力求培養(yǎng)出具有實(shí)際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個(gè)實(shí)際問(wèn)題,對(duì)其作出一些必要的簡(jiǎn)化與假設(shè),將其轉(zhuǎn)化成一個(gè)數(shù)學(xué)問(wèn)題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問(wèn)題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實(shí)際問(wèn)題并接受客觀實(shí)際的檢驗(yàn)。數(shù)學(xué)建模能彌補(bǔ)傳統(tǒng)數(shù)學(xué)教學(xué)在實(shí)際應(yīng)用方面的不足,促進(jìn)數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,在計(jì)算機(jī)應(yīng)用能力、實(shí)踐能力和創(chuàng)新意識(shí)的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來(lái)能更好地適應(yīng)工作崗位。
。ǘ└咝=虒W(xué)改革的需要
當(dāng)今社會(huì)信息高度發(fā)達(dá),競(jìng)爭(zhēng)日益激烈,必須具備一定的.創(chuàng)新意識(shí)和創(chuàng)新能力,否則很難適應(yīng)社會(huì)信息時(shí)代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時(shí)間都集中學(xué)習(xí)書本知識(shí),很少有機(jī)會(huì)接觸社會(huì),也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長(zhǎng)期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動(dòng)性,會(huì)聽從而不會(huì)質(zhì)疑,更不會(huì)形成開創(chuàng)性的觀點(diǎn),很難適應(yīng)企事業(yè)單位動(dòng)態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對(duì)獨(dú)立學(xué)院的學(xué)生來(lái)說(shuō),學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時(shí)的條件非常相近,是一次非常好的鍛煉,學(xué)生通過(guò)自主的學(xué)習(xí),把實(shí)際的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動(dòng)手能力的提高,這也正是獨(dú)立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
(三)學(xué)生參加數(shù)學(xué)建模競(jìng)賽的需要
獨(dú)立學(xué)院學(xué)生思維活躍,且比較注重個(gè)人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競(jìng)賽來(lái)提高自己。全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競(jìng)賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對(duì)數(shù)學(xué)公式提起了興趣,還有助于獨(dú)立學(xué)院學(xué)生在全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽中取得優(yōu)異成績(jī)。
三、結(jié)語(yǔ)
高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識(shí),培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實(shí)現(xiàn)提高學(xué)生綜合分析問(wèn)題能力的最終目標(biāo)。
作者:崔瑋 王文麗 單位:中國(guó)地質(zhì)大學(xué)長(zhǎng)城學(xué)院信息工程系
數(shù)學(xué)建模論文6
本文針對(duì)目前高校數(shù)學(xué)建模教學(xué)開展的現(xiàn)狀,從學(xué)生、教師、教材和學(xué)校四個(gè)方法進(jìn)行了分析,指出目前數(shù)學(xué)建模教學(xué)的問(wèn)題之所在,并給出了數(shù)學(xué)建模教學(xué)的若干策略和建議。
進(jìn)入20世紀(jì)以來(lái),數(shù)學(xué)的應(yīng)用以空前的廣度和深度向諸如經(jīng)濟(jì)、人口、生態(tài)、地質(zhì)等新的領(lǐng)域滲透。數(shù)學(xué)的應(yīng)用已成為科技進(jìn)步的重要推動(dòng)力,無(wú)論是微觀的機(jī)理研究,還是宏觀的決策分析都離不開數(shù)學(xué)的應(yīng)用,人們已習(xí)慣用數(shù)學(xué)思維思考問(wèn)題,用數(shù)學(xué)語(yǔ)言表達(dá)問(wèn)題,用數(shù)學(xué)方法解決問(wèn)題。而要用數(shù)學(xué)方法來(lái)解決實(shí)際問(wèn)題,首先需要建立實(shí)際問(wèn)題的數(shù)學(xué)模型,即針對(duì)該實(shí)際問(wèn)題,分析其重要特征,進(jìn)行必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,建立的一個(gè)數(shù)學(xué)結(jié)構(gòu)。我們把這樣的一個(gè)過(guò)程稱為數(shù)學(xué)建模。數(shù)學(xué)建模是實(shí)現(xiàn)與發(fā)揮數(shù)學(xué)應(yīng)用功能的重要手段,同時(shí)也是啟迪創(chuàng)新思維、培養(yǎng)創(chuàng)新人才的一個(gè)重要途徑。
英、美等國(guó)自二十世紀(jì)七十年代在研究生和本科階段相繼開設(shè)了“數(shù)學(xué)建!闭n程,并于七十年代末期進(jìn)入中學(xué)課堂。我國(guó)在上個(gè)世紀(jì)八十年代中期,借鑒英、美等國(guó)開設(shè)“數(shù)學(xué)建!闭n程的經(jīng)驗(yàn),由清華大學(xué)應(yīng)用數(shù)學(xué)系主任蕭樹鐵教授首倡并實(shí)踐,在清華大學(xué)和國(guó)內(nèi)部分高校開設(shè)了“數(shù)學(xué)模型”課程[2]。
近幾年,隨著“全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽”規(guī)模和受認(rèn)可程度的日益壯大,隨著教育部在新課標(biāo)中將“數(shù)學(xué)建模”設(shè)為新增內(nèi)容模塊,隨著對(duì)高等數(shù)學(xué)教學(xué)改革的呼聲日益強(qiáng)烈,越來(lái)越多的地方院校開始重視數(shù)學(xué)建模教育的重要作用,在理工類專業(yè)甚至是經(jīng)管類專業(yè)大量開設(shè)“數(shù)學(xué)建!闭n程。但數(shù)學(xué)建模課程與傳統(tǒng)的數(shù)學(xué)課程不同,數(shù)學(xué)建模課重點(diǎn)在于培養(yǎng)學(xué)生的創(chuàng)新思維和創(chuàng)新能力,如何進(jìn)行有效的數(shù)學(xué)建模教學(xué)是一個(gè)問(wèn)題。
本文將對(duì)目前大學(xué)數(shù)學(xué)建模教學(xué)現(xiàn)狀進(jìn)行分析,總結(jié)出教學(xué)過(guò)程中存在的突出問(wèn)題,并提出大學(xué)數(shù)學(xué)建模教學(xué)策略。
一、數(shù)學(xué)建模教學(xué)的現(xiàn)狀分析
目前,開設(shè)“數(shù)學(xué)建!闭n程的院校越來(lái)越多,但是通過(guò)調(diào)查我們發(fā)現(xiàn)效果并不是很理想,學(xué)生用數(shù)學(xué)解決實(shí)際問(wèn)題的能力并沒(méi)有得到很大程度上的提高。經(jīng)過(guò)深入的調(diào)查和分析,我們發(fā)現(xiàn)主要有以下幾個(gè)方面的問(wèn)題。
首先,學(xué)生缺乏良好的基礎(chǔ)。建立數(shù)學(xué)模型解決各種實(shí)際問(wèn)題,需要開放式的數(shù)學(xué)建模思維,需要善于聯(lián)想發(fā)散的創(chuàng)新意識(shí),需要堅(jiān)持不懈的頑強(qiáng)毅力,需要合理分工團(tuán)結(jié)合作的協(xié)助能力。而這些往往都不是傳統(tǒng)課程教學(xué)中所側(cè)重的,在從小學(xué)到大學(xué)的傳統(tǒng)數(shù)學(xué)課上,學(xué)生從課堂上學(xué)到的可能更多的是具體的知識(shí)方法,做的可能更多的是有固定解法有正確答案的數(shù)學(xué)題。因此數(shù)學(xué)建模課程的基礎(chǔ)要求與培養(yǎng)目標(biāo)和學(xué)生的建;A(chǔ)之間存在巨大的差距。所以沒(méi)有好的學(xué)習(xí)基礎(chǔ),不能得到好的學(xué)習(xí)效果也就是很自然的事情了,在僅僅一門“數(shù)學(xué)建!闭n上進(jìn)行彌補(bǔ)也是幾乎不太可能的事情。
其次,教師普遍缺乏開展研究性教學(xué)的經(jīng)驗(yàn)。數(shù)學(xué)建模的教學(xué)是一種以學(xué)生為主體的創(chuàng)造性研究性學(xué)習(xí)。與傳統(tǒng)數(shù)學(xué)教學(xué)以知識(shí)為中心不同,數(shù)學(xué)建模的教學(xué)強(qiáng)調(diào)讓學(xué)生親身體驗(yàn)如何“用數(shù)學(xué)”、如何抓住主要因素簡(jiǎn)化問(wèn)題將實(shí)際問(wèn)題化為數(shù)學(xué)問(wèn)題,在實(shí)踐中感受數(shù)學(xué)建模的思想,體會(huì)運(yùn)用數(shù)學(xué)的力量。因此,數(shù)學(xué)建模教師在教學(xué)中不能只關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,更應(yīng)該重視學(xué)生在學(xué)習(xí)過(guò)程中的情感和體驗(yàn),重視培養(yǎng)學(xué)生的直覺(jué)思維。而這些可能是目前教師所缺乏的,或者是教師在教學(xué)過(guò)程中很容易忽視的,需要我們的教師在教學(xué)過(guò)程中重視,采用恰當(dāng)?shù)慕虒W(xué)模式教學(xué)手段,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,強(qiáng)化實(shí)踐教學(xué),讓學(xué)生在大量實(shí)踐中學(xué)會(huì)建模。
再次,目前缺乏系統(tǒng)的適合不同層次學(xué)生學(xué)習(xí)的數(shù)學(xué)建模教材,F(xiàn)有的新編的數(shù)學(xué)建模教材大多面向數(shù)學(xué)建模競(jìng)賽培訓(xùn),案例一般相對(duì)比較復(fù)雜,初學(xué)者學(xué)起來(lái)會(huì)比較困難,不適合初學(xué)者進(jìn)行學(xué)習(xí),也有一些早期的數(shù)學(xué)建模教材案例大多比較簡(jiǎn)單,但大多與時(shí)代脫節(jié),不能有效的.激發(fā)學(xué)生的學(xué)習(xí)興趣。
最后,部分學(xué)校存在功利意識(shí)。數(shù)學(xué)建模教育的目的在于激發(fā)學(xué)生主動(dòng)探究問(wèn)題的積極性,培養(yǎng)學(xué)生的創(chuàng)新精神和研究問(wèn)題的科學(xué)性,而科學(xué)研究和創(chuàng)新往往不是在短期內(nèi)就可以看到好的成果的,數(shù)學(xué)建模教育應(yīng)該重視的是學(xué)生參與建模實(shí)踐的過(guò)程,在實(shí)踐中體會(huì)一種用數(shù)學(xué)解決實(shí)際問(wèn)題的意識(shí),想用數(shù)學(xué)會(huì)用數(shù)學(xué)創(chuàng)造性的解決實(shí)際問(wèn)題,從而帶來(lái)能力上的提高。各種數(shù)學(xué)建模競(jìng)賽只是給學(xué)生提供更多實(shí)踐機(jī)會(huì)的一個(gè)平臺(tái),能否獲獎(jiǎng)不應(yīng)該是我們建模教學(xué)的根本目的,重要的是在參與的過(guò)程中,學(xué)生體會(huì)到了什么,學(xué)到了什么?但在部分學(xué)校,目前出現(xiàn)了重建模競(jìng)賽輕建模教學(xué)的情況,重視賽前對(duì)重點(diǎn)學(xué)生的突擊培訓(xùn),輕視在平時(shí)對(duì)所有學(xué)生的常規(guī)建模教學(xué)工作,甚至出現(xiàn)了,為了獲獎(jiǎng)由老師捉刀代筆的情況,從建模能力培養(yǎng)上,學(xué)生自然也就不會(huì)有多大的收獲。
二、數(shù)學(xué)建模的教學(xué)策略
數(shù)學(xué)建模的教學(xué)是一個(gè)系統(tǒng)工程,不應(yīng)該簡(jiǎn)單的只是開設(shè)一門課的問(wèn)題,從學(xué)生建模意識(shí)的滲透,到教師教法的研究和教學(xué)內(nèi)容的恰當(dāng)選取,到學(xué)校各方面的正確認(rèn)識(shí)和重視,都是構(gòu)建合理有效的數(shù)學(xué)建模策略所需要考慮的問(wèn)題。
首先,我們要通過(guò)多種渠道分層次開展數(shù)學(xué)建模的思想和方法的推廣和教學(xué)。數(shù)學(xué)建模課程的學(xué)時(shí)是十分有限的,而且“用數(shù)學(xué)”的思維習(xí)慣的養(yǎng)成也不是短時(shí)間內(nèi)就可以完成的事情。所以數(shù)學(xué)建模思想的推廣不能僅限于數(shù)學(xué)建模課,應(yīng)該通過(guò)多種渠道分層次的在整個(gè)大學(xué)期間進(jìn)行不斷的滲透和強(qiáng)化,只有這樣才能達(dá)到培養(yǎng)學(xué)生創(chuàng)新思維,提高學(xué)生用數(shù)學(xué)解決實(shí)際問(wèn)題的能力。
我們可以嘗試在高等數(shù)學(xué),線性代數(shù)等數(shù)學(xué)類基礎(chǔ)課上滲透數(shù)學(xué)建模的思想和方法。教師可以結(jié)合數(shù)學(xué)課的教學(xué)內(nèi)容,舉一些簡(jiǎn)單的、離學(xué)生生活較近的數(shù)學(xué)建模題目的例子,對(duì)數(shù)學(xué)建模的概念、步驟和方法進(jìn)行講解,并可以適當(dāng)?shù)牟捎胢atlab等數(shù)學(xué)軟件用加深學(xué)生的直觀影響。這樣做不僅可以提前對(duì)學(xué)生進(jìn)行數(shù)學(xué)建模的啟蒙,也讓數(shù)學(xué)類基礎(chǔ)課的教學(xué)更加生動(dòng)有趣。同時(shí)我們還可以借助學(xué)生社團(tuán)的力量,在課外開展數(shù)學(xué)建模講座和數(shù)學(xué)建模興趣小組等活動(dòng),這對(duì)于維持學(xué)生的學(xué)習(xí)積極性體會(huì)數(shù)學(xué)建模的魅力也是非常有益的?傊,數(shù)學(xué)建模的教學(xué)一定不能局限于一個(gè)學(xué)期的課堂教學(xué),最好能通過(guò)各種途徑貫徹始終。
其次,我們要重視數(shù)學(xué)建模課主講教師的培養(yǎng)。建模比賽中獲過(guò)獎(jiǎng)或者指導(dǎo)過(guò)學(xué)生獲獎(jiǎng)的教師也不一定能教好數(shù)學(xué)建模課,不一定能使學(xué)生的建模能力得到普遍的提高。要成為一名優(yōu)秀的建模教師,需要更新教育教學(xué)觀念,改變以學(xué)生為中心的教學(xué)模式,多與其他院校的建模老師交流,學(xué)習(xí)他人的成功教學(xué)模式和教學(xué)經(jīng)驗(yàn),還需要擴(kuò)展教師的知識(shí)體系,才能駕馭開放的建模問(wèn)題,最重要的是提高教師的敬業(yè)精神和教學(xué)團(tuán)隊(duì)的合作精神,和其他課程的教學(xué)相比較,數(shù)學(xué)建模的教學(xué)需要教師付出大量課外的勞動(dòng),沒(méi)有團(tuán)結(jié)合作,拼搏奉獻(xiàn)的教學(xué)隊(duì)伍,是不可能開展好數(shù)學(xué)建模的教學(xué)工作。
再次,我們要針對(duì)學(xué)校的實(shí)際情況有目的性的選擇合適的案例開展教學(xué)。好的數(shù)學(xué)建模案例應(yīng)該適合學(xué)生的能力水平,難度太大的問(wèn)題會(huì)使得學(xué)生無(wú)從入手失去興趣,太容易的問(wèn)題也會(huì)學(xué)生感覺(jué)乏味得不到提高,我們需要隨著學(xué)生建模能力的提高,逐步提高案例的難度。與實(shí)際聯(lián)系緊密的熱點(diǎn)問(wèn)題可以更好的吸引學(xué)生的興趣,體會(huì)數(shù)學(xué)建模的魅力,但所涉及的專業(yè)背景不能太深,最好在學(xué)生的認(rèn)知范圍以內(nèi)。開放性的問(wèn)題可以更好的發(fā)揮學(xué)生的想象力,給學(xué)生更大的發(fā)揮空間,更好的鍛煉學(xué)生的建模能力。
數(shù)學(xué)建模論文7
摘 要:隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也得到了長(zhǎng)足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對(duì)計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說(shuō)有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
關(guān)鍵詞:數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用
隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也有了長(zhǎng)足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會(huì)、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見,數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問(wèn)題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的`規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號(hào)、公式等將潛在的信息表達(dá)出來(lái),再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
1 數(shù)學(xué)建模的特質(zhì)
從宏觀角度上來(lái)講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過(guò)數(shù)字演示來(lái)完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門注重實(shí)際問(wèn)題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無(wú)邊際的宇宙,小到對(duì)于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過(guò)程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過(guò)程也十分耗費(fèi)時(shí)間,因此需要充足的存儲(chǔ)空間支持這一過(guò)程的運(yùn)行。在數(shù)學(xué)建模的過(guò)程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡(jiǎn)單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。 正因如此,在數(shù)學(xué)建模的過(guò)程當(dāng)中,就需要使用各種輔助工具來(lái)完成這一過(guò)程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過(guò)程當(dāng)中,與數(shù)學(xué)建模過(guò)程密不可分息息相關(guān)。由此可見,計(jì)算機(jī)技術(shù)的應(yīng)用水平對(duì)于數(shù)學(xué)學(xué)科的重要作用。
2 數(shù)學(xué)建模與計(jì)算機(jī)技術(shù)之間的聯(lián)系
2。1 計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn) 計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長(zhǎng)足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過(guò)程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對(duì)計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過(guò)程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說(shuō)數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。
2。2 計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持 數(shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲(chǔ)空間能夠完成存儲(chǔ)資料的這一過(guò)程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲(chǔ)時(shí)間較為長(zhǎng)久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過(guò)程的復(fù)雜化及對(duì)于實(shí)際問(wèn)題的研究方向的特質(zhì),使得對(duì)于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過(guò)程也十分復(fù)雜,常見的過(guò)程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對(duì)于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
2。3 數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石 計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過(guò)程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過(guò)大,人工無(wú)法滿足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開了序幕。數(shù)學(xué)建模的過(guò)程是需要計(jì)算機(jī)來(lái)完成的,在全部的過(guò)程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來(lái)講,計(jì)算機(jī)技術(shù)對(duì)于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。
數(shù)學(xué)建模論文8
【論文關(guān)鍵詞】數(shù)學(xué)建模創(chuàng)新能力創(chuàng)新思維教學(xué)模式
【論文摘要】闡述了數(shù)學(xué)建模對(duì)培養(yǎng)學(xué)生創(chuàng)新能力的意義,討論了如何在數(shù)學(xué)建模的教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新思維,探討了數(shù)學(xué)建模的教學(xué)模式。
1引言
當(dāng)今世界,創(chuàng)新取代了傳統(tǒng)的比較優(yōu)勢(shì),已經(jīng)無(wú)可替代地成為國(guó)家競(jìng)爭(zhēng)戰(zhàn)略的基礎(chǔ)。
因此,加強(qiáng)創(chuàng)新精神和創(chuàng)新能力的培養(yǎng),已是世界各國(guó)教育改革的共同趨勢(shì),也是我國(guó)實(shí)現(xiàn)“科教興國(guó)”戰(zhàn)略的基本要求,創(chuàng)新教育已經(jīng)成為高等教育的核心,多年來(lái)的教育實(shí)踐證明,數(shù)學(xué)建模的教學(xué)與競(jìng)賽活動(dòng)在高等學(xué)校的創(chuàng)新教育中的地位和意義已是舉足輕重。
一年一度的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng)是由國(guó)家教育部高教司直接組織領(lǐng)導(dǎo),面向全國(guó)高校,規(guī)模最大,參與院校最多,涉及面最廣的一項(xiàng)科技競(jìng)賽活動(dòng)。其宗旨是“創(chuàng)新意識(shí),團(tuán)隊(duì)精神;重在參與,公平競(jìng)爭(zhēng)”。自1992年舉辦第一屆競(jìng)賽以來(lái),參賽隊(duì)數(shù)以平均每年近30%的速度增加,2006年已達(dá)到864所院校9985個(gè)參賽隊(duì)的規(guī)模。正是由于數(shù)學(xué)建模競(jìng)賽活動(dòng)的深入開展,它積極地推動(dòng)了大學(xué)數(shù)學(xué)教學(xué)改革的開展,并已取得了顯著的成果。
2數(shù)學(xué)建模對(duì)培養(yǎng)學(xué)生創(chuàng)新能力的意義
高校作為人才培養(yǎng)的基地,圍繞加快培養(yǎng)創(chuàng)新型人才這個(gè)主題,積極探索教學(xué)改革之路,是廣大教育工作者面臨的一項(xiàng)重要任務(wù)。正是在這種形勢(shì)下,數(shù)學(xué)建模與數(shù)學(xué)建模競(jìng)賽,這個(gè)我國(guó)教育史上新生事物的出現(xiàn),受到了各級(jí)教育管理部門的關(guān)心和重視,也得到了科技界和教育界的普遍關(guān)注。這主要是數(shù)學(xué)建模的教學(xué)和競(jìng)賽活動(dòng)有利于人才的培養(yǎng),特別是人才的綜合能力、創(chuàng)新意識(shí)、科研素質(zhì)的培養(yǎng)。也正因?yàn)槿绱,?shù)學(xué)建模活動(dòng)的實(shí)際效果正在不斷的顯現(xiàn)出來(lái),“數(shù)學(xué)建模的人才”和“數(shù)學(xué)建模的能力”正在實(shí)際工作中發(fā)揮著積極的作用。
數(shù)學(xué)建模本身就是一個(gè)創(chuàng)造性的思維過(guò)程。數(shù)學(xué)建模的教學(xué)內(nèi)容、教學(xué)方法以及數(shù)學(xué)建模競(jìng)賽培訓(xùn)都是圍繞創(chuàng)新能力的培養(yǎng)這一核心主題進(jìn)行的,其內(nèi)容取材于實(shí)際,方法結(jié)合于實(shí)際,結(jié)果應(yīng)用于實(shí)際。數(shù)學(xué)建模的教學(xué)和競(jìng)賽培訓(xùn),為學(xué)生的探索性學(xué)習(xí)和研究性學(xué)習(xí)搭建了平臺(tái)。數(shù)學(xué)建模的教學(xué)和競(jìng)賽,注重培養(yǎng)學(xué)生敏銳的觀察力、科學(xué)的思維力和豐富的想象力,既要求學(xué)生具有豐富的知識(shí),又要求學(xué)生具有較強(qiáng)的實(shí)踐操作能力;既有智力和能力要求,又有良好的個(gè)性心理品質(zhì)要求;既要求敢于競(jìng)爭(zhēng),又要求善于合作。數(shù)學(xué)建模真正體現(xiàn)了開發(fā)學(xué)生潛能、培養(yǎng)學(xué)生優(yōu)秀心理品質(zhì)以及積極探索態(tài)度的良好結(jié)合。在數(shù)學(xué)建模的教學(xué)與競(jìng)賽中,特別注重發(fā)揮學(xué)生的主動(dòng)性、積極性、創(chuàng)造性、耐挫折性,特別是提倡探索精神、創(chuàng)造精神、批判精神、團(tuán)隊(duì)協(xié)作精神等。知識(shí)創(chuàng)新、方法創(chuàng)新、結(jié)果創(chuàng)新、應(yīng)用創(chuàng)新無(wú)不在數(shù)學(xué)建模的過(guò)程中得到體現(xiàn)。實(shí)踐正在證明,數(shù)學(xué)建模的教學(xué)與競(jìng)賽活動(dòng)是培養(yǎng)大學(xué)生創(chuàng)新思維和創(chuàng)新能力的一種極其重要的方法和途徑。
3在數(shù)學(xué)建模的教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新思維
創(chuàng)新型人才是指具有較強(qiáng)的創(chuàng)新精神、創(chuàng)造意識(shí)和創(chuàng)新能力,并善于將創(chuàng)造能力化為創(chuàng)造性成果和產(chǎn)品的人才。盡管創(chuàng)新精神、創(chuàng)造意識(shí)和創(chuàng)新能力的培養(yǎng)不是一個(gè)學(xué)科或一門課程的教學(xué)所能完成的,但大量的中外教育實(shí)踐充分證明,數(shù)學(xué)教育在創(chuàng)新型人才的培養(yǎng)中具有其他學(xué)科不可替代的優(yōu)勢(shì)和作用。因?yàn)閿?shù)學(xué)中的理論和方法是人們從量的側(cè)面研究現(xiàn)實(shí)世界所得到的客觀規(guī)律,是研究各種科學(xué)技術(shù)不可缺少的語(yǔ)言和工具。
而數(shù)學(xué)建模的過(guò)程則恰好是將數(shù)學(xué)中的理論和方法又重新應(yīng)用于解決現(xiàn)實(shí)問(wèn)題,即是理論來(lái)源于實(shí)踐又要服務(wù)于實(shí)踐的一個(gè)完美體現(xiàn)。這一過(guò)程高度反映了人的創(chuàng)新精神、創(chuàng)造意識(shí)和創(chuàng)新能力。
數(shù)學(xué)本身包含著許多重要的思想方法,比如由特殊到一般的思想、從有限到無(wú)限的思想、歸納類比的思想、倒推逆向分析思維、試探思想等,其本質(zhì)都是創(chuàng)造性思維方法。我們?cè)跀?shù)學(xué)建模的教學(xué)過(guò)程中不刻意地去追求運(yùn)算技巧和方法,而將重點(diǎn)放在數(shù)學(xué)思想方法的傳授上,運(yùn)用對(duì)數(shù)學(xué)思想方法的體會(huì)去啟迪學(xué)生的創(chuàng)新思維,激發(fā)學(xué)生的創(chuàng)新欲望。
數(shù)學(xué)上的歸納和類比思維是一種非常典型的創(chuàng)新思維,著名的.數(shù)學(xué)家拉普拉斯說(shuō)過(guò)“在數(shù)學(xué)里,發(fā)現(xiàn)真理的主要工具和手段是歸納和類比”。而大多數(shù)數(shù)學(xué)模型的建立、修改或改進(jìn),很多時(shí)侯都是依靠這種歸納與類比思維。在尋找模型求解的算法時(shí),也常常用類比思維,利用相似的算法加以優(yōu)化和改進(jìn)而得到,有時(shí)甚至可以發(fā)現(xiàn)新的更好的算法。
發(fā)散思維是許多科學(xué)家非常重視的一種思維形式,科學(xué)家運(yùn)用發(fā)散思維獲得重要發(fā)現(xiàn)的例子不勝枚舉。我們?cè)跀?shù)學(xué)建模的教學(xué)過(guò)程中倡導(dǎo)學(xué)生養(yǎng)成發(fā)散思維的習(xí)慣,通過(guò)一些具體的建模實(shí)例,讓學(xué)生感受到在科學(xué)上要敢于聯(lián)想,敢于突破條條框框,敢于標(biāo)新立異。
逆向思維,即“反過(guò)來(lái)想一想”。人們思考問(wèn)題時(shí)常常只注重于已有的聯(lián)系,沿著合乎習(xí)慣的正向順推,但有時(shí)如果采用“倒過(guò)來(lái)”思考的逆向思維方式,往往會(huì)產(chǎn)生意想不到的效果。比如,2004年全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽A題:奧運(yùn)會(huì)臨時(shí)超市網(wǎng)點(diǎn)設(shè)計(jì)中的第三個(gè)問(wèn)題:若有兩種大小不同規(guī)模的迷你超市(Mini—Supermarket)類型供選擇,給出圖2中20個(gè)商區(qū)MS網(wǎng)點(diǎn)的設(shè)計(jì)方案(即每個(gè)商區(qū)內(nèi)不同類型MS的個(gè)數(shù),并滿足題中三個(gè)基本要求:滿足奧運(yùn)會(huì)期間的購(gòu)物需求、分布基本均衡、商業(yè)上盈利)。在設(shè)計(jì)MS網(wǎng)點(diǎn)時(shí)為考慮滿足商業(yè)上盈利這一要求,如果單從正面去考慮商業(yè)上的盈利模型,則有很多未知的因素?zé)o法確定,諸如商品種類、數(shù)量、價(jià)格、銷售額等,因而無(wú)法建立模型。但若運(yùn)用逆向思維,從市場(chǎng)需求去預(yù)測(cè)可能的盈利能力,因?yàn)槭袌?chǎng)需求量可利用前述問(wèn)題中已得到的商區(qū)的人流量的分布,從而為后面的規(guī)劃模型的建立與求解提供了關(guān)鍵性的辦法。
4數(shù)學(xué)建模教學(xué)模式的探索
剛踏入大學(xué)校門的大一新生,首先接受的是基礎(chǔ)數(shù)學(xué)教育,雖然這一階段將決定著學(xué)生畢業(yè)后能否成為創(chuàng)新型人才,但學(xué)校要想培養(yǎng)出高質(zhì)量的創(chuàng)新型人才,基礎(chǔ)的數(shù)學(xué)教育是以知識(shí)傳授為主體的教與學(xué)的過(guò)程,多年來(lái)的事實(shí)證明,這一過(guò)程很難肩負(fù)對(duì)學(xué)生創(chuàng)新能力的培養(yǎng)。隨著數(shù)學(xué)建模與數(shù)學(xué)建模競(jìng)賽這一事物的出現(xiàn),人們很快發(fā)現(xiàn),數(shù)學(xué)建模教學(xué),尤其是數(shù)學(xué)建模競(jìng)賽的培訓(xùn)是實(shí)現(xiàn)這一目標(biāo)的一條很好的途徑。經(jīng)過(guò)多年來(lái)的摸索,我們對(duì)數(shù)學(xué)建模的教學(xué)模式做了如下探索。
第一,充分再現(xiàn)數(shù)學(xué)發(fā)現(xiàn)的思維過(guò)程。學(xué)生學(xué)習(xí)的數(shù)學(xué)知識(shí),盡管是前人創(chuàng)造性思維的成果,學(xué)生作為學(xué)習(xí)的主體處于再發(fā)現(xiàn)的地位,給學(xué)生展示數(shù)學(xué)發(fā)現(xiàn)的思維過(guò)程,就是引導(dǎo)學(xué)生重走數(shù)學(xué)知識(shí)的發(fā)現(xiàn)之路,使得學(xué)生的再發(fā)現(xiàn)得以順利完成。而這實(shí)質(zhì)上也是對(duì)學(xué)生創(chuàng)新思維的一種培養(yǎng)過(guò)程。然而這一點(diǎn)常常被許多數(shù)學(xué)教師所忽視,他們只注重?cái)?shù)學(xué)知識(shí)的傳授,而隱去了數(shù)學(xué)知識(shí)的發(fā)現(xiàn)過(guò)程,這就無(wú)形地扼制了學(xué)生創(chuàng)新思維的發(fā)展。而數(shù)學(xué)建模的教學(xué)卻能彌補(bǔ)基礎(chǔ)數(shù)學(xué)教學(xué)的這一缺陷,能讓學(xué)生在數(shù)學(xué)建模的過(guò)程中充分體會(huì)數(shù)學(xué)發(fā)現(xiàn)的創(chuàng)造性樂(lè)趣,從而培養(yǎng)其創(chuàng)新思維。
第二,更新教學(xué)形式。傳統(tǒng)的單一滿堂灌、填鴨式、保姆式的課堂教學(xué)形式,容易養(yǎng)成學(xué)生對(duì)老師的依賴心理,不利于調(diào)動(dòng)學(xué)生的主觀能動(dòng)性,更不利于激發(fā)學(xué)生的創(chuàng)造性思維。因而要想在培養(yǎng)學(xué)生的創(chuàng)新能力方面有所突破,必須打破原有的單一教學(xué)模式,探索和嘗試一些行之有效的新的教學(xué)形式。近幾年來(lái),我們根據(jù)數(shù)學(xué)建模的具體要求,有意識(shí)的嘗試了不同于以往傳統(tǒng)的教學(xué)模式,將多種不同的教學(xué)形式進(jìn)行了優(yōu)化組合,力求變以教師為中心為以學(xué)生為中心,充分調(diào)動(dòng)學(xué)生的主觀能動(dòng)性和思維的積極性,培養(yǎng)創(chuàng)新意識(shí)和創(chuàng)新能力。
5我校數(shù)學(xué)建模的教學(xué)模式
我校自1994年第一次組隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽以來(lái),已走過(guò)15年的風(fēng)風(fēng)雨雨。15年來(lái),在利用數(shù)學(xué)建模培養(yǎng)學(xué)生創(chuàng)新能力方面,我們不斷地反思并總結(jié)經(jīng)驗(yàn)和教訓(xùn)。
經(jīng)過(guò)多年來(lái)的反復(fù)實(shí)踐和深入探索,我們以培養(yǎng)和提升學(xué)生創(chuàng)新能力為目標(biāo),以數(shù)學(xué)建模選修課和數(shù)學(xué)建模競(jìng)賽培訓(xùn)課為載體激發(fā)學(xué)生的創(chuàng)新欲望,以少數(shù)學(xué)生影響并帶動(dòng)大多數(shù)學(xué)生參與數(shù)學(xué)建;顒(dòng)體驗(yàn)創(chuàng)新樂(lè)趣,作為我們制定數(shù)學(xué)建模教學(xué)大綱、教學(xué)計(jì)劃、確定教學(xué)模式的宗旨。下面介紹我校數(shù)學(xué)建模的教學(xué)模式。
數(shù)學(xué)建模的教學(xué)內(nèi)容分為兩部分:
第一部分:數(shù)學(xué)建模選修課。該課總課時(shí)36小時(shí),由4或5位教師每人2或3次課講完,每位教師每次課主講一個(gè)數(shù)學(xué)建模方法方面的專題,專題的講解以先介紹案例再引出理論或先講述理論再介紹案例的方式進(jìn)行,每位教師至少布置一道題目,原則上要求每位學(xué)生在選修課學(xué)完后須上交一份作業(yè),該作業(yè)可以是選做教師布置的某一題,也可以自己找題并求解,以論文形式上交。由于時(shí)間的限制,選修課中沒(méi)有介紹論文寫作,所以對(duì)學(xué)生的作業(yè)論文并不做嚴(yán)格要求,只注重其內(nèi)容中是否有閃光的創(chuàng)意之處,并作為后續(xù)選拔數(shù)學(xué)建模競(jìng)賽選手的一個(gè)重要依據(jù)。
第二部分:數(shù)學(xué)建模競(jìng)賽培訓(xùn)課。培訓(xùn)課分三個(gè)階段進(jìn)行。第一階段是軟件和數(shù)學(xué)建模方法的培訓(xùn)。軟件培訓(xùn)主要介紹的MatLab、Spss、Lingo的使用和基本操作;數(shù)學(xué)建模方法包括:最優(yōu)化方法建模、微分方程建模、數(shù)理統(tǒng)計(jì)方法建模、層次分析法建模、網(wǎng)絡(luò)圖的方法建模、神經(jīng)網(wǎng)絡(luò)建模、模糊數(shù)學(xué)建模、遺傳算法建模、概率仿真建模。第二階段是專題培訓(xùn)。首先從歷年全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中選出9個(gè)分為3組,然后由3位多年來(lái)的資深指導(dǎo)教師講解如何審題、破題;如何查找資料、整理資料;如何分析問(wèn)題、建立模型;如何分析并尋找合適的算法并對(duì)模型進(jìn)行求解;如何對(duì)模型求解結(jié)果進(jìn)行分析并加以修改或改進(jìn);最后告訴學(xué)生如何對(duì)自己所做的工作加以總結(jié)并寫成一篇規(guī)范的科技論文。第三階段是模擬競(jìng)賽。給定三個(gè)題目,由各參選隊(duì)任選一題,要求按全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽的所有規(guī)則進(jìn)行模擬競(jìng)賽。三天后各隊(duì)提交一篇論文,最后選定其中最好的10個(gè)隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。
參考文獻(xiàn)
[1]謝云蓀,成孝予,鐘守銘。轉(zhuǎn)變教育思想提高數(shù)學(xué)素質(zhì)培養(yǎng)創(chuàng)造性人才[J]。工科數(shù)學(xué),1997,13(6):132—136。
[2]傅英定,成孝予,彭年斌等。轉(zhuǎn)變教育觀念培養(yǎng)學(xué)生創(chuàng)造性思維能力的研究與實(shí)踐。電子高等教育的理論與實(shí)踐[M]。成都:電子科技大學(xué)出版社,2000:181—184。
[3]安正玉,鄧正隆。本科教學(xué)應(yīng)突出創(chuàng)造能力的培養(yǎng)[J]。高等科教管理,1997(2):43—46。
[4]李心燦。在高等數(shù)學(xué)的教學(xué)中培養(yǎng)學(xué)生創(chuàng)造性思維的一些實(shí)踐與思考[J]。工科數(shù)學(xué),1999,15(6):35—41。
[5]韓中庚等。數(shù)學(xué)建模競(jìng)賽—獲獎(jiǎng)?wù)撐木x與點(diǎn)評(píng)[M]。北京:科學(xué)出版社2007:201—216。
[6]張仁麗,李捷飛,邱霆。MS網(wǎng)點(diǎn)的合理布局[J]。工程數(shù)學(xué)學(xué)報(bào)2004,21(7)29—35。
數(shù)學(xué)建模論文9
【摘要】數(shù)學(xué)教育不僅是知識(shí)教育,更是素質(zhì)教育。數(shù)學(xué)建模能有效地將高等數(shù)學(xué)與職業(yè)教育結(jié)合在一起,以傳授和學(xué)習(xí)數(shù)學(xué)知識(shí)為載體,通過(guò)嚴(yán)格認(rèn)真的數(shù)學(xué)學(xué)習(xí)和訓(xùn)練,可以使學(xué)生具備一些特有的素質(zhì)和能力,終生受用不盡。MATLAB、SAS和LINGO等數(shù)學(xué)軟件能夠有效地幫助學(xué)生完成專業(yè)課程中數(shù)學(xué)的分析和計(jì)算,必將成為高職院校數(shù)學(xué)教學(xué)改革的大勢(shì)所趨。
一、高職院校高等數(shù)學(xué)教學(xué)現(xiàn)狀
1.大部分高職院校高等數(shù)學(xué)教學(xué)模式與本科院校一樣,采用傳統(tǒng)講授式?筛呗氃盒W(xué)生與本科院校存在很大差距,大多學(xué)生聽不懂,學(xué)習(xí)興致也不高,教學(xué)很難進(jìn)行下去,F(xiàn)在有部分本科院校采用對(duì)分課堂和混合教學(xué)以及翻轉(zhuǎn)課堂等比較先進(jìn)的教學(xué)方法,但大都對(duì)學(xué)生基礎(chǔ)和學(xué)習(xí)主動(dòng)性要求較高,不太適合高職院校學(xué)生。2.高職院校培養(yǎng)的是職業(yè)人才,以就業(yè)為導(dǎo)向,專業(yè)學(xué)科為主,基礎(chǔ)學(xué)科為輔。近年來(lái),高職院校專業(yè)學(xué)科都在搞項(xiàng)目驅(qū)動(dòng)教學(xué),開展校企合作模式,這將是未來(lái)高職院校的發(fā)展趨勢(shì)。高等數(shù)學(xué)如何為專業(yè)服務(wù),解決的方式絕不是一味的摒棄,值得思考。3.教育部指出:“未來(lái)職業(yè)教育要培養(yǎng)學(xué)生的工匠精神”,也就是說(shuō)職業(yè)教育不單單是就業(yè)教育,更是職業(yè)水準(zhǔn)教育。未來(lái)高職培養(yǎng)的人才應(yīng)該是高素質(zhì)、高水平以及創(chuàng)新性人才。職業(yè)教育如果只停留在就業(yè)上,那么學(xué)生未來(lái)的職業(yè)發(fā)展很快將遭遇瓶頸。
二、高職院校高等數(shù)學(xué)教學(xué)模式的探索
怎樣將一門高深而又乏味的高數(shù)教給一群不愛(ài)學(xué)習(xí)且數(shù)學(xué)底子差的學(xué)生們,甚至要對(duì)他們以后的職業(yè)發(fā)展提供一些幫助呢?我覺(jué)得數(shù)學(xué)建模是一個(gè)好的方向,主要基于以下幾點(diǎn):職業(yè)教育是應(yīng)用教育,數(shù)學(xué)建模就是用數(shù)學(xué)方法解決各種實(shí)際問(wèn)題,包括大量數(shù)學(xué)科學(xué)、運(yùn)籌學(xué)、工程、管理和生命科學(xué)等諸多學(xué)術(shù)領(lǐng)域中常見的有意義的和實(shí)際問(wèn)題,二者相得益彰。數(shù)學(xué)建模可以貼近學(xué)生專業(yè)方向,讓學(xué)生充分感受其實(shí)用性、直觀性。區(qū)別于傳統(tǒng)講授講學(xué),團(tuán)隊(duì)合作、親身實(shí)踐、主動(dòng)查找以及研討交流的行動(dòng)導(dǎo)向教學(xué)方式將數(shù)學(xué)思維貫穿于數(shù)學(xué)建模中,不僅有利于培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和創(chuàng)新精神,而且會(huì)使學(xué)生對(duì)數(shù)學(xué)有更深理解,從而增強(qiáng)他們學(xué)好數(shù)學(xué)積極性和主動(dòng)性,其結(jié)果必然是大大增強(qiáng)他們面對(duì)21世紀(jì)嚴(yán)峻挑戰(zhàn)的競(jìng)爭(zhēng)力。數(shù)學(xué)建模可以培養(yǎng)個(gè)性發(fā)展的專業(yè)人才,提升學(xué)生職業(yè)價(jià)值感。學(xué)生要研究一個(gè)特定領(lǐng)域以獲得對(duì)某些行為(性態(tài))的更深入的理解,僅有高等數(shù)學(xué)的知識(shí)已遠(yuǎn)遠(yuǎn)不夠。建模課程將激勵(lì)學(xué)生去學(xué)習(xí)諸如線性代數(shù)、微分方程、最優(yōu)化和線性規(guī)劃、數(shù)值分析、概率論和統(tǒng)計(jì)學(xué)這樣更高深的課程。人才培養(yǎng)更注重個(gè)性化發(fā)展,更加關(guān)注學(xué)生的職業(yè)生涯發(fā)展。
三、高職院校高等數(shù)學(xué)教學(xué)實(shí)施策略
當(dāng)然,數(shù)學(xué)建模課程的實(shí)施應(yīng)該首先具備建模素養(yǎng)。并不是說(shuō),數(shù)學(xué)建模好、有用,就可以直接進(jìn)行數(shù)學(xué)建模了,那顯然是行不通的。我們應(yīng)當(dāng)遵從以下幾個(gè)步驟:第一步,以人才培養(yǎng)定位、專業(yè)設(shè)置和目標(biāo)確定對(duì)課程構(gòu)建。不同的人才培養(yǎng)方案,不同的專業(yè),不同的培養(yǎng)目標(biāo),確定不同的課程教學(xué)。下面以包頭鐵道職業(yè)技術(shù)學(xué)院為例。學(xué)院是專門培養(yǎng)鐵路專業(yè)人才的高等職業(yè)技術(shù)院校,除了基礎(chǔ)教學(xué)部,還設(shè)有鐵道工程系、建筑工程系、機(jī)械工程系、鐵道交通運(yùn)輸系、機(jī)車車輛系、通信信號(hào)系6個(gè)系。這6個(gè)系又涵蓋了20個(gè)專業(yè)方向。針對(duì)三年制高職,第一學(xué)年主要是理論教學(xué)部分的學(xué)習(xí),包含基礎(chǔ)課程和面向?qū)I(yè)課程。第二學(xué)年便可以開始數(shù)學(xué)建模實(shí)驗(yàn)課程的學(xué)習(xí)了。學(xué)生先要掌握極限、導(dǎo)數(shù)、微積分的思維方法,我把它們稱為基礎(chǔ)課程,還要懂得微分方程、線性代數(shù)以及概率論與數(shù)理統(tǒng)計(jì)等面向?qū)I(yè)的課程,我把它們稱為面向?qū)I(yè)課程。1.基礎(chǔ)課程(必修):開設(shè)時(shí)間:第一學(xué)年第一學(xué)期總課時(shí):20周×4學(xué)時(shí)/周=80學(xué)時(shí)其中:極限(20學(xué)時(shí))導(dǎo)數(shù)(30學(xué)時(shí))積分(30學(xué)時(shí))考核方式:考試課。考試50%,平時(shí)50%。教學(xué)目標(biāo):高等數(shù)學(xué)三大核心思想:“極限、導(dǎo)數(shù)、微積分”,要求學(xué)生會(huì)進(jìn)行簡(jiǎn)單計(jì)算,熟練掌握三大思想的本質(zhì)含義。2.面向?qū)I(yè)課程(選修,結(jié)合本專業(yè)需求,任選其一):開設(shè)時(shí)間:第一學(xué)年第二學(xué)期總課時(shí):18周×2學(xué)時(shí)/周=36學(xué)時(shí)線性代數(shù)(36學(xué)時(shí))面向機(jī)車車輛、通信信號(hào)專業(yè);統(tǒng)計(jì)學(xué)(36學(xué)時(shí))面向鐵道交通運(yùn)輸專業(yè);微分方程(36學(xué)時(shí))面向鐵道工程、建筑工程、機(jī)械工程專業(yè)?己朔绞剑嚎疾煺n教學(xué)目標(biāo):根據(jù)專業(yè)需求,以及學(xué)生個(gè)人的人生規(guī)劃,選擇適合自己的專業(yè)數(shù)學(xué)課程,以便在這些方面進(jìn)行深入研究和創(chuàng)新突破。3.數(shù)學(xué)實(shí)驗(yàn)課程(選修):開設(shè)時(shí)間:第二學(xué)年第一學(xué)期總課時(shí):20周×2學(xué)時(shí)/周=40學(xué)時(shí)考核方式:考察課教學(xué)目標(biāo):希望大家能理解數(shù)學(xué)軟件功能實(shí)現(xiàn)的數(shù)學(xué)背景與算法原理,掌握利用數(shù)學(xué)軟件進(jìn)行問(wèn)題求解的基本規(guī)律,能夠使用數(shù)學(xué)軟件作為專業(yè)應(yīng)用的工具,能從繁雜的計(jì)算事務(wù)中解放出來(lái),促進(jìn)計(jì)算機(jī)和專業(yè)應(yīng)用的結(jié)合,促進(jìn)計(jì)算機(jī)應(yīng)用水平提高和對(duì)專業(yè)知識(shí)的掌握。對(duì)應(yīng)課程:科學(xué)計(jì)算與MATLAB語(yǔ)言、統(tǒng)計(jì)分析與SAS、優(yōu)化與LINGO。第二步,以團(tuán)隊(duì)合作、親身實(shí)踐、主動(dòng)查找以及研討交流的行動(dòng)導(dǎo)向教學(xué)方式。柏林大學(xué)的校長(zhǎng)洪堡認(rèn)為:大學(xué)教授的主要任務(wù)并不是“教”,大學(xué)學(xué)生的任務(wù)也不是“學(xué)”。大學(xué)學(xué)生必須獨(dú)立地自己去從事“研究”,至于大學(xué)教授的工作,則在引導(dǎo)學(xué)生“研究”的興趣,再進(jìn)一步去指導(dǎo)并幫助學(xué)生去做研究工作。以“學(xué)生為中心,教師是關(guān)鍵,將數(shù)學(xué)建模思想和方法融入專業(yè)學(xué)科中”是我們教學(xué)方式改變的核心。傳統(tǒng)的教學(xué)中,教師照本宣科,學(xué)生死啃課本,教學(xué)內(nèi)容千篇一律,缺少變化,缺乏創(chuàng)新,再加上高職的學(xué)生基礎(chǔ)差、意志力薄弱,上課不是玩手機(jī)就是睡倒一片,學(xué)期末考試更是慘不忍睹。針對(duì)于這種情況,我認(rèn)為應(yīng)該先在教學(xué)計(jì)劃上,應(yīng)該摘掉枝葉,直奔主題,突出主題,突出數(shù)學(xué)的應(yīng)用性和實(shí)用性,這就將本科教育和職業(yè)教育區(qū)分開來(lái)。對(duì)于理論部分的教學(xué),多年來(lái),我一直秉承“小組合作”方式,效果非常好。只要掌握四點(diǎn)原則:“學(xué)、展、點(diǎn)、練”!皩W(xué)”:自主學(xué)習(xí),合作學(xué)習(xí);“展”:展示交流,分享共贏;“點(diǎn)”:精講點(diǎn)撥,點(diǎn)評(píng)升華;“練”:有效訓(xùn)練,知識(shí)落實(shí)。以每個(gè)班40人為例,將學(xué)生分成8個(gè)小組,每組一名小組長(zhǎng)。每節(jié)課教師講授時(shí)間不超過(guò)15分鐘,之后布置本節(jié)課的學(xué)習(xí)任務(wù),學(xué)生在小組長(zhǎng)的帶領(lǐng)下自主學(xué)習(xí)、合作學(xué)習(xí)。然后小組長(zhǎng)將學(xué)習(xí)效果向教師反饋,教學(xué)根據(jù)反饋情況將學(xué)生作品向全班同學(xué)展示交流,讓學(xué)生自行評(píng)判哪些是正確的,哪些是錯(cuò)誤的,為什么?再接著,教師進(jìn)行總結(jié)反思,升華主題。最后,為了鞏固課堂效果,教師要適當(dāng)布置課后作業(yè)。實(shí)驗(yàn)教學(xué)比理論教學(xué)要容易得多,因?yàn)閷W(xué)生本身對(duì)電腦和應(yīng)用性知識(shí)就要感興趣,教起來(lái)很輕松。而且,我發(fā)現(xiàn)在與學(xué)生的交流中經(jīng)常收到意想不到的效果,有些學(xué)生能夠解決教師都感到頭疼的'編程問(wèn)題。這就到達(dá)了師生共同研究,教學(xué)相長(zhǎng)的效果。每學(xué)期制定幾個(gè)研究課題,諸如構(gòu)建各種情景的模型,完成UMAP的教學(xué)單元或研究教材、課堂中的一個(gè)作為例子講述的模型等。對(duì)每個(gè)學(xué)生來(lái)說(shuō),在整個(gè)課程中接受模型構(gòu)建、模型分析或模型研究的多樣性研究課題的組合,并建立起信心是重要的。學(xué)生可能會(huì)選擇一個(gè)特別感興趣的情景研制模型,或分析在另一門課程中的模型,在典型的建模課程中推薦5到8個(gè)短小的研究課題。第三步,教學(xué)資源庫(kù)建設(shè)。不同專業(yè)面對(duì)的問(wèn)題、學(xué)習(xí)的課程以及解決的方案不同,這就需要教本專業(yè)的教師對(duì)該專業(yè)的數(shù)學(xué)模型有一定的積累。資源庫(kù)建設(shè)有助于數(shù)學(xué)建模教學(xué)的可持續(xù)發(fā)展,不斷積累的模型和經(jīng)驗(yàn)不僅使教學(xué)更加容易,而且能加深對(duì)實(shí)際問(wèn)題的認(rèn)識(shí)和優(yōu)化,真正到達(dá)數(shù)學(xué)服務(wù)專業(yè)的目的。第四步,師資隊(duì)伍建設(shè)。如果沒(méi)有教師自身和集體的鉆研和實(shí)踐,以及結(jié)合學(xué)生實(shí)際情況的因材施教,也不可能完成上述任務(wù)。數(shù)學(xué)建模教學(xué)是一項(xiàng)長(zhǎng)期而繁重的任務(wù),因?yàn)樯婕暗臄?shù)學(xué)方向多,應(yīng)用計(jì)算機(jī)軟件也很多,單靠幾個(gè)教師是無(wú)法獨(dú)立完成的。這就需要精細(xì)分工和團(tuán)隊(duì)合作。教同一專業(yè)的幾個(gè)教師最好長(zhǎng)期從事該學(xué)科的教學(xué)和研究,并經(jīng)常出去參加培訓(xùn)以及交流學(xué)習(xí),這樣才能保證走在本專業(yè)學(xué)科的最前沿,傳授的知識(shí)才能適應(yīng)社會(huì)的發(fā)展。第五步,監(jiān)控、評(píng)價(jià)等管理制度建設(shè)。合理的考核評(píng)價(jià)體系有利于建模的有序推進(jìn),否則,改革則半途而廢。
【參考文獻(xiàn)】
[1]FrankR.Giordano,MauriceD.Weir,WilliamP.Fox.數(shù)學(xué)建模[M].北京:機(jī)械工業(yè)出版社,20xx.
[2]別敦榮,李連梅.柏林大學(xué)的發(fā)展歷程、教育理念及其啟示[J].復(fù)旦教育論壇,20xx(06).
[3]劉莉.蘇格拉底如何做教師[J].華東師范大學(xué)學(xué)報(bào)(教育科學(xué)版),20xx(06).
[4]于澤元,王丹藝.核心素養(yǎng)對(duì)課程意味著什么[J].現(xiàn)代遠(yuǎn)程教育研究,20xx(05). 作者:高黎明 單位:包頭鐵道職業(yè)技術(shù)學(xué)院基礎(chǔ)教學(xué)部
[5]張學(xué)新.對(duì)分課堂:大學(xué)課堂教學(xué)改革的新探索[J].復(fù)旦教育論壇,20xx(05).
數(shù)學(xué)建模論文10
一、在高職高專高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模的基本思路
在高職高專高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模,首先在概念講授中要融入數(shù)學(xué)建模思想。數(shù)學(xué)概念是高等數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),同時(shí)也是高等數(shù)學(xué)的靈魂,能不能理解數(shù)學(xué)基本概念是能否學(xué)好數(shù)學(xué)的關(guān)鍵。在講解概念的過(guò)程中要讓學(xué)生了解這些概念的來(lái)龍去脈,讓學(xué)生充分了解數(shù)學(xué)概念產(chǎn)生、發(fā)展、應(yīng)用的全部過(guò)程,要讓學(xué)生明白為什么要學(xué)高等數(shù)學(xué),帶著問(wèn)題主動(dòng)去學(xué)習(xí),注重講清高等數(shù)學(xué)概念是怎樣形成的,再結(jié)合學(xué)生所學(xué)專業(yè)背景,將這些概念與現(xiàn)實(shí)生活中的問(wèn)題聯(lián)系起來(lái)。例如在學(xué)習(xí)導(dǎo)數(shù)概念這一節(jié)時(shí),可以將概念的講解和現(xiàn)實(shí)生活中實(shí)際現(xiàn)象相結(jié)合,如:二氧化碳的排放造成的全球變暖、豬肉價(jià)格的漲跌、自由下落物體運(yùn)動(dòng)等,讓學(xué)生思考平均變化率和瞬時(shí)變化率的問(wèn)題,然后講解兩個(gè)經(jīng)典的數(shù)學(xué)模型:物體的瞬時(shí)速度和曲線的切線斜率,進(jìn)而提出導(dǎo)數(shù)的概念,通過(guò)與現(xiàn)實(shí)問(wèn)題結(jié)合講授概念,能讓學(xué)生更好地理解并應(yīng)用導(dǎo)數(shù)概念。
其次,在高職高專高等數(shù)學(xué)教學(xué)中,將數(shù)學(xué)建模案例與定理講解相結(jié)合。例如,在介紹條件極值的時(shí)候,可以與“奶制品的生產(chǎn)與銷售”這個(gè)建模例子結(jié)合起來(lái)講解,通過(guò)教師的引導(dǎo),將條件極值和這個(gè)問(wèn)題聯(lián)系起來(lái),找到它們之間的關(guān)系,用數(shù)學(xué)建模的思想解決這個(gè)實(shí)際問(wèn)題。在講解極值定理時(shí),可以增加簡(jiǎn)單的優(yōu)化模型,例如與“存貯模型”“生豬出售時(shí)機(jī)”“最優(yōu)價(jià)格”等數(shù)學(xué)模型相結(jié)合。通過(guò)這些實(shí)際問(wèn)題的模型,學(xué)生能更好理解高等數(shù)學(xué)中定理,并學(xué)會(huì)應(yīng)用定理解決實(shí)際問(wèn)題。再次,在高等數(shù)學(xué)習(xí)題課教學(xué)中可以增加建模案例教學(xué)的環(huán)節(jié),數(shù)學(xué)建模案例的難易程度應(yīng)與高職高專學(xué)生的.知識(shí)水平和學(xué)習(xí)能力相符,過(guò)于簡(jiǎn)單或過(guò)于困難都不利培養(yǎng)學(xué)生的學(xué)習(xí)興趣,要選取難易適當(dāng)、與現(xiàn)實(shí)生活相關(guān)的實(shí)際問(wèn)題,例如,在微分中值定理及導(dǎo)數(shù)應(yīng)用這一章習(xí)題課中可以增加“消費(fèi)者選擇”數(shù)學(xué)模型;在積分知識(shí)及其應(yīng)用這一章習(xí)題課中可以增加“存儲(chǔ)問(wèn)題”數(shù)學(xué)模型,在微分方程這一章的習(xí)題課中,可以增加“經(jīng)濟(jì)增長(zhǎng)模型”和“香煙過(guò)濾嘴的作用”,等等。通過(guò)對(duì)這些與現(xiàn)實(shí)相關(guān)的問(wèn)題的研究,學(xué)生能清楚地認(rèn)識(shí)到高等數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用,從而積極主動(dòng)地應(yīng)用數(shù)學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題。最后,可以在高等數(shù)學(xué)課程的考核中增加數(shù)學(xué)建模問(wèn)題。
學(xué)完每章節(jié)的內(nèi)容后,在課外作業(yè)的布置中,除書本中的習(xí)題外可以再增加一兩道需要運(yùn)用本章知識(shí)解決的實(shí)際問(wèn)題的數(shù)學(xué)建模題目,這些數(shù)學(xué)建?梢宰寣W(xué)生獨(dú)立或自由組合成小組去完成,給予完成情況好的學(xué)生較高的平時(shí)分,在期末考試試題中以附加題的形式增加數(shù)學(xué)建模的題目。用這種方法,鼓勵(lì)學(xué)生應(yīng)用數(shù)學(xué)的知識(shí)解決現(xiàn)實(shí)中各種問(wèn)題,提高學(xué)生使用數(shù)學(xué)知識(shí)解題的能力,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,從而使學(xué)生獲得除數(shù)學(xué)知識(shí)本身以外的素質(zhì)與創(chuàng)新能力。
二、在高職高專教學(xué)中融入數(shù)學(xué)建模,教師要具備創(chuàng)造性思維和創(chuàng)新精神
在高職高專高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模的思想,要培養(yǎng)教師具有較高的創(chuàng)造型思維修養(yǎng)和較強(qiáng)的創(chuàng)新精神。創(chuàng)造性思維和創(chuàng)新精神內(nèi)涵豐富,要有刻苦鉆研、敢于探索的精神,腳踏實(shí)地、勤奮、求真務(wù)實(shí)的態(tài)度,鍥而不舍、堅(jiān)韌不拔的意志,不畏艱難、艱苦奮斗的心理準(zhǔn)備,良好的心態(tài)、強(qiáng)烈的自我控制和團(tuán)隊(duì)協(xié)作意識(shí)等多方面的品質(zhì)。教師是高職高專人才培養(yǎng)質(zhì)量的重要因素,高職高專院校要培養(yǎng)學(xué)生的思考能力和探索精神,教師必須具備較高創(chuàng)造性思維修養(yǎng)和創(chuàng)新精神,如果高職高專的教師隊(duì)伍不具備創(chuàng)造性和創(chuàng)新性,培養(yǎng)出的學(xué)生就不可能具備探索精神和創(chuàng)新品質(zhì)。實(shí)踐證明,高職高專數(shù)學(xué)建模教學(xué)的順利開展,可以讓教師在教學(xué)中增加實(shí)際問(wèn)題模型,讓教師在教學(xué)過(guò)程中與學(xué)生形成互動(dòng),引導(dǎo)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題模型,培養(yǎng)學(xué)生自主創(chuàng)新思考能力,打破傳統(tǒng)的“填鴨式”、“滿堂灌”等教學(xué)方式,讓學(xué)生由被動(dòng)學(xué)習(xí)轉(zhuǎn)變?yōu)橹鲃?dòng)學(xué)習(xí),達(dá)到良好的教學(xué)效果。
數(shù)學(xué)建模論文11
摘要:高職院校開設(shè)數(shù)學(xué)建模課程是具有一定意義的,要將建模思想應(yīng)用到數(shù)學(xué)教學(xué)中,教師就必須適應(yīng)當(dāng)前的教學(xué)環(huán)境,由傳統(tǒng)的傳授模式轉(zhuǎn)變?yōu)閯?chuàng)造性地傳輸方式。教師要不斷提高自我教學(xué)水平,不斷充實(shí)自己,用正確的方式引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)、實(shí)踐。
關(guān)鍵詞:數(shù)學(xué);教學(xué);數(shù)學(xué)建模
1.數(shù)學(xué)建模思想的意義
數(shù)學(xué)建模是指用數(shù)學(xué)符號(hào)將要求從定量角度進(jìn)行研究分析的實(shí)際問(wèn)題以公式的形式表述出來(lái),再通過(guò)進(jìn)一步計(jì)算得到相關(guān)結(jié)果,用該結(jié)果解決實(shí)際問(wèn)題,即通過(guò)建立數(shù)學(xué)模型和求解的整個(gè)過(guò)程。數(shù)學(xué)建模是符合學(xué)生認(rèn)知發(fā)展過(guò)程的,在數(shù)學(xué)建模中,學(xué)生通過(guò)對(duì)具體的假設(shè)、研究,對(duì)問(wèn)題進(jìn)行深入思考,最終得到結(jié)論,再根據(jù)實(shí)際情況應(yīng)用到具體問(wèn)題中。整個(gè)過(guò)程經(jīng)歷了提出問(wèn)題、試探問(wèn)題、提出猜想假設(shè)、驗(yàn)證問(wèn)題及得出結(jié)論,整個(gè)過(guò)程符合學(xué)生認(rèn)知發(fā)展的規(guī)律。數(shù)學(xué)建模思想的應(yīng)用有助于幫助學(xué)生提高對(duì)數(shù)學(xué)的重視程度,調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性,讓學(xué)生的創(chuàng)造力得到更大的發(fā)揮。數(shù)學(xué)建模的應(yīng)用對(duì)提高教師的教學(xué)水平也有所幫助,能夠幫助教師更好地對(duì)學(xué)生進(jìn)行教學(xué),由此擴(kuò)大教師在學(xué)生中的影響力。教學(xué)建模的思想應(yīng)用還有利于提高學(xué)生參加競(jìng)賽的綜合能力,吸引更多學(xué)生參加此類競(jìng)賽活動(dòng)。
2.建模思想對(duì)能力的培養(yǎng)
數(shù)學(xué)建模思想很多是由實(shí)際問(wèn)題的一般思維進(jìn)行轉(zhuǎn)變才能成為抽象的數(shù)學(xué)問(wèn)題的,這要求對(duì)數(shù)學(xué)建模要抓住重點(diǎn),從具體問(wèn)題中抽象出問(wèn)題的本質(zhì)。因此,建模思想對(duì)于培養(yǎng)學(xué)生將具體問(wèn)題經(jīng)過(guò)抽象和簡(jiǎn)化用數(shù)學(xué)語(yǔ)言表達(dá)的能力具有重要的意義。在高職數(shù)學(xué)教學(xué)中,有很多的數(shù)學(xué)模型,這些數(shù)學(xué)模型為幫助學(xué)生解決實(shí)際問(wèn)題提供了便利的方法,同時(shí)也為創(chuàng)建新的數(shù)學(xué)模型提供了基礎(chǔ)依據(jù)。數(shù)學(xué)建模是將數(shù)學(xué)理論知識(shí)和實(shí)際應(yīng)用聯(lián)系起來(lái)的重要紐帶,能夠幫助學(xué)生不斷探索數(shù)學(xué)中的奧妙,以此提高學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高學(xué)生實(shí)際應(yīng)用數(shù)學(xué)的能力和解決實(shí)際問(wèn)題的能力。運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的過(guò)程中,要根據(jù)已知條件的變化,靈活運(yùn)用新方法和新途徑促進(jìn)學(xué)生綜合運(yùn)用能力和創(chuàng)新思維的發(fā)展。
3.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用
3.1利用教學(xué)內(nèi)容滲透數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)中,教師要根據(jù)教材的情況和學(xué)生的實(shí)際情況,將兩者相聯(lián)系,讓學(xué)生能夠運(yùn)用數(shù)學(xué)建模思想尋找解決問(wèn)題的辦法,解決實(shí)際問(wèn)題。在教學(xué)中,教師要向?qū)W生灌輸數(shù)學(xué)建模思想,利用具體模型設(shè)置和假設(shè)情景,把數(shù)學(xué)知識(shí)和實(shí)際生活相聯(lián)系,幫助學(xué)生更好地理解數(shù)學(xué)實(shí)際內(nèi)容,提高知識(shí)應(yīng)用能力。比如在高職數(shù)學(xué)對(duì)定積分概念進(jìn)行教學(xué)時(shí),就可以通過(guò)介紹曲邊梯形的面積求法,讓學(xué)生學(xué)會(huì)分割、求和、取極限的定積分模型思想,然后再進(jìn)行思考,求物體的體積、質(zhì)量等。如果學(xué)生發(fā)現(xiàn)解決這些問(wèn)題的數(shù)學(xué)模型的思想基本相同,就會(huì)不斷拓展新思路解決其他問(wèn)題。運(yùn)用這種方式,能夠加深學(xué)生對(duì)概念的理解,拓展學(xué)習(xí)思維,強(qiáng)化教學(xué)效果。在學(xué)習(xí)定理公式的時(shí)候,也可以引進(jìn)數(shù)學(xué)建模思想,通過(guò)提出問(wèn)題、假設(shè)問(wèn)題,要求學(xué)生計(jì)算求值,再根據(jù)值的正負(fù)情況求出方程式的根,根據(jù)根值與區(qū)間的關(guān)系,引導(dǎo)學(xué)生想出零點(diǎn)定理的概念總結(jié)。
3.2利用實(shí)際問(wèn)題滲透教學(xué)建模思想教師在數(shù)學(xué)建模教學(xué)或布置作業(yè)時(shí),要與實(shí)際的生活相聯(lián)系,讓學(xué)生在實(shí)際問(wèn)題的解決中學(xué)會(huì)運(yùn)用建模思想。比如在問(wèn)題的'設(shè)置上,可以利用身邊熟悉的事物進(jìn)行提問(wèn),讓學(xué)生從熟悉的環(huán)境中找到合適的解決方法。這不僅能夠幫助學(xué)生更好地理解知識(shí)概念,還與學(xué)生以后的工作有著緊密的聯(lián)系。通過(guò)在實(shí)際問(wèn)題中滲透教學(xué)建模思想,讓學(xué)生掌握基本的理論知識(shí),提高知識(shí)應(yīng)用能力。此外,教師在課外作業(yè)的布置上也要運(yùn)用數(shù)學(xué)建模思想解決實(shí)際的問(wèn)題,讓學(xué)生能夠有效利用所學(xué)的數(shù)學(xué)知識(shí)分析解決生活中的問(wèn)題,從而提高知識(shí)應(yīng)用能力,培養(yǎng)出學(xué)生的創(chuàng)新思維,提高高職數(shù)學(xué)建模教學(xué)的效率。
3.3提高數(shù)學(xué)建模思想在教材編寫中的應(yīng)用目前高職數(shù)學(xué)的教材基本都是按照本科教材進(jìn)行編排的,重視理論而忽視了應(yīng)用。高職學(xué)生大多數(shù)對(duì)理論的興趣不大,對(duì)實(shí)際應(yīng)用能夠產(chǎn)生一定的興趣,并較好地進(jìn)行掌握。所以編寫出一本適合高職培養(yǎng)的目標(biāo)教材是十分重要的,既能滿足高職數(shù)學(xué)建模思想的可持續(xù)發(fā)展要求,又能充分滿足學(xué)生的要求,實(shí)現(xiàn)高職的培養(yǎng)目標(biāo)。在高職數(shù)學(xué)教材的編寫上,要重視學(xué)生的實(shí)際水平,不但要讓學(xué)生能夠?qū)W到相應(yīng)的知識(shí),還要為以后的學(xué)習(xí)打好基礎(chǔ),培養(yǎng)學(xué)生的創(chuàng)造力和進(jìn)一步深造的能力。教師要把數(shù)學(xué)建模思想方法運(yùn)用到教材中,讓學(xué)生帶著問(wèn)題學(xué)習(xí),把講授的知識(shí)點(diǎn)和數(shù)學(xué)建模思想有機(jī)結(jié)合,提高學(xué)生掌握實(shí)際問(wèn)題的能力,徹底讓學(xué)生擺脫數(shù)學(xué)乏味論的問(wèn)題,能夠?qū)λ鶎W(xué)內(nèi)容學(xué)以致用。
4.提高高職數(shù)學(xué)教學(xué)數(shù)學(xué)建模思想的方式
4.1教師要重視引導(dǎo)高職教師需要認(rèn)識(shí)到講授知識(shí)并不是教學(xué)的終極目標(biāo),更主要的是培養(yǎng)學(xué)生的應(yīng)用和創(chuàng)新能力。其教學(xué)目的應(yīng)當(dāng)是通過(guò)科學(xué)的數(shù)學(xué)思維方式培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,提高他們自主學(xué)習(xí)的意識(shí)。高職學(xué)生的整體知識(shí)水平并不是很高,對(duì)于很多問(wèn)題都不能深入地進(jìn)行思考,遇到難題也沒(méi)有繼續(xù)深入研究的動(dòng)力,缺乏自主創(chuàng)新的意識(shí)和獨(dú)立思考的能力。所以教師需要重視引導(dǎo)的作用,引導(dǎo)學(xué)生的思維向更廣闊的方向發(fā)展,讓學(xué)生能夠用數(shù)學(xué)思維看待周圍的事物,仔細(xì)觀察、分析各種事物之間的聯(lián)系和存在的數(shù)學(xué)模型,并且能夠通過(guò)數(shù)學(xué)語(yǔ)言描述事物間的聯(lián)系,進(jìn)而用求知的方式解決事物間的實(shí)際問(wèn)題。教師的引導(dǎo)對(duì)于學(xué)生而言有啟迪作用,能夠激發(fā)學(xué)生的求知欲,對(duì)數(shù)學(xué)問(wèn)題產(chǎn)生興趣,在實(shí)際教學(xué)中是一種重要的教學(xué)手段。
4.2重視合作的力量教師除了積極引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模思想外,還要讓學(xué)生學(xué)會(huì)用合作的方式提升自己的思維水平。合作可以利用整體的功能彌補(bǔ)一個(gè)人思維的狹隘面,解決思考單一問(wèn)題,促進(jìn)學(xué)生多方面、多角度地思考問(wèn)題。合作讓學(xué)生能夠盡快找到合適的角色,通過(guò)互幫互助的方式共同提高,加快問(wèn)題的解決。在合作中,學(xué)生能夠準(zhǔn)確利用自己熟悉擅長(zhǎng)的環(huán)節(jié)幫助提高整體的成績(jī)和思維水平,切實(shí)加強(qiáng)團(tuán)隊(duì)的整體水平和綜合素質(zhì)。團(tuán)體合作還能讓每個(gè)學(xué)生都參與進(jìn)去,都有展示和鍛煉自己的機(jī)會(huì),從而增強(qiáng)自信心,提高學(xué)習(xí)能力,培養(yǎng)良好的溝通能力,促進(jìn)學(xué)生之間的團(tuán)結(jié)合作,幫助提高學(xué)生的交往能力。重視合作的力量,能夠幫助學(xué)生發(fā)現(xiàn)自己的特長(zhǎng)和特點(diǎn),增強(qiáng)信心,提高自我探索精神,同時(shí)合作中產(chǎn)生的競(jìng)爭(zhēng)也能激發(fā)學(xué)生對(duì)數(shù)學(xué)問(wèn)題進(jìn)行深入探究。
4.3重視數(shù)學(xué)建模過(guò)程數(shù)學(xué)建模的最終目標(biāo)并不是解決了什么樣的問(wèn)題、獲得了什么樣的結(jié)論,而是在建模過(guò)程中學(xué)生能夠通過(guò)自己的努力,不斷進(jìn)行實(shí)踐和自我否定,最終找到解決具體問(wèn)題的有效方式。數(shù)學(xué)建模過(guò)程也是一個(gè)學(xué)習(xí)的過(guò)程和一個(gè)不斷提升自我的過(guò)程,所以教師要重視數(shù)學(xué)建模的過(guò)程,讓學(xué)生感受到實(shí)踐過(guò)程的魅力,根據(jù)學(xué)生的基本狀況和不同的特點(diǎn),綜合利用學(xué)生的特長(zhǎng)和優(yōu)點(diǎn)提高他們解決實(shí)際問(wèn)題的能力,讓學(xué)生感受到數(shù)學(xué)的意義,體會(huì)到發(fā)現(xiàn)數(shù)學(xué)的樂(lè)趣,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和思維習(xí)慣。教師通過(guò)引導(dǎo)學(xué)生,也要讓學(xué)生重視數(shù)學(xué)建模的過(guò)程,從數(shù)學(xué)建模中發(fā)現(xiàn)學(xué)習(xí)的樂(lè)趣,產(chǎn)生學(xué)好數(shù)學(xué)的信心和動(dòng)力,并且通過(guò)不斷深造發(fā)展,能夠在數(shù)學(xué)建模中發(fā)揮自己的才能,展現(xiàn)出自己擅長(zhǎng)的一面,在建模和交流中獲得感受和啟發(fā)。
5結(jié)語(yǔ)
高職院校開設(shè)數(shù)學(xué)建模課程是具有一定意義的,要將建模思想應(yīng)用到數(shù)學(xué)教學(xué)中,教師就必須適應(yīng)當(dāng)前的教學(xué)環(huán)境,由傳統(tǒng)的傳授模式轉(zhuǎn)變?yōu)閯?chuàng)造性地傳輸方式。教師要不斷提高自我教學(xué)水平,不斷充實(shí)自己,用正確的方式引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)、實(shí)踐。教學(xué)中只有通過(guò)不斷創(chuàng)新,根據(jù)教學(xué)的實(shí)際情況提高學(xué)生的數(shù)學(xué)知識(shí)應(yīng)用能力,這樣才能不斷提高學(xué)習(xí)效率,幫助學(xué)生為以后的學(xué)習(xí)和工作打下堅(jiān)實(shí)的基礎(chǔ)。
數(shù)學(xué)建模論文12
一、數(shù)學(xué)建模教學(xué)現(xiàn)狀分析
在數(shù)學(xué)建模教學(xué)中,“講授法”還是主流教學(xué)法,雖也有啟發(fā),借助多媒體輔助教學(xué),但由于互動(dòng)不足,學(xué)生自主參與較少,主動(dòng)性和積極性沒(méi)能有效調(diào)動(dòng)起來(lái),導(dǎo)致教學(xué)效果不夠理想,學(xué)生沒(méi)懂多少,沒(méi)有理解掌握數(shù)學(xué)建模的思想和方法。
二、數(shù)學(xué)建模教學(xué)的改革舉措
1.加強(qiáng)宣傳。為了讓更多的學(xué)生了解數(shù)學(xué)建模,可通過(guò)紙質(zhì)媒體、電子媒體進(jìn)行宣傳,還可通過(guò)組建學(xué)生數(shù)學(xué)建模協(xié)會(huì)開展活動(dòng)廣而告之,還可通過(guò)在高等數(shù)學(xué)的教學(xué)中融入數(shù)學(xué)建模的案例,讓學(xué)生初步了解數(shù)學(xué)建模及其特點(diǎn),產(chǎn)生學(xué)習(xí)數(shù)學(xué)建模的興趣。2.分類開課。為了讓更多學(xué)生受益,雖有競(jìng)賽任務(wù),數(shù)學(xué)建模選修課還是不應(yīng)限定選課學(xué)生范圍,比如只限定一年級(jí)學(xué)生或者有意參賽的學(xué)生,而應(yīng)面向全體學(xué)生開設(shè),又考慮到選課的學(xué)生不全是以參加競(jìng)賽為目的,不全是對(duì)數(shù)學(xué)建模感興趣,甚至有些是因?yàn)闆](méi)得選而又必須完成選修課學(xué)分的要求,可將選修課班級(jí)分“普及班”和“競(jìng)賽班”兩類供學(xué)生選擇,既滿足學(xué)生選課的需求又兼顧競(jìng)賽的'需要,對(duì)不同班級(jí)提出不同的教學(xué)要求。3.優(yōu)化教學(xué)內(nèi)容。在選擇教學(xué)內(nèi)容時(shí),應(yīng)注意如下幾點(diǎn):一是模型類型不宜太多,不要搞得太復(fù)雜,比如只講初等模型、簡(jiǎn)單的優(yōu)化模型;二是模型數(shù)量不宜太多,以4-6個(gè)為宜;三是難度不宜太大,還應(yīng)循序漸進(jìn),內(nèi)容最好為學(xué)生了解、喜聞樂(lè)見,所選模型應(yīng)有利于培養(yǎng)學(xué)生求異思維、創(chuàng)新思維;四是加入數(shù)學(xué)軟件的教學(xué),讓學(xué)生“玩起來(lái)”,初步學(xué)會(huì)數(shù)學(xué)軟件的使用,體會(huì)數(shù)學(xué)建模與普通數(shù)學(xué)的不同之處,體驗(yàn)到數(shù)學(xué)的用武之地。4.改進(jìn)教學(xué)方法。傳統(tǒng)的講授式教學(xué)法,學(xué)生一般處于被動(dòng)狀態(tài),不利于發(fā)揮學(xué)生的主觀能動(dòng)性,而要學(xué)好數(shù)學(xué)建模需要學(xué)生主動(dòng)積極參與,更多參與到教學(xué)過(guò)程當(dāng)中來(lái),因此應(yīng)該采用任務(wù)驅(qū)動(dòng)教學(xué)法、互動(dòng)式教學(xué)法、研討式教學(xué)法等。
三、收獲與體會(huì)
從20xx年開始,我們?cè)跀?shù)學(xué)建模選修課教學(xué)中進(jìn)行了實(shí)踐,取得了良好效果,有如下收獲和體會(huì):
數(shù)學(xué)建模課堂教學(xué)面貌換然一新。任務(wù)驅(qū)動(dòng)、互動(dòng)式、研討式等教學(xué)法的綜合運(yùn)用,改變了以往“教師講,學(xué)生聽”,學(xué)生被動(dòng)的教學(xué)模式,轉(zhuǎn)變?yōu)閷W(xué)生主動(dòng)參與、自主協(xié)作、積極探索的新型學(xué)習(xí)模式,踐行了“教師為主導(dǎo)、學(xué)生為主體”教育精神;通過(guò)教師引導(dǎo)學(xué)生進(jìn)行研究學(xué)習(xí),讓學(xué)生親歷知識(shí)產(chǎn)生與形成的過(guò)程,學(xué)會(huì)獨(dú)立運(yùn)用其所學(xué)的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,從而實(shí)現(xiàn)知識(shí)發(fā)現(xiàn)與重構(gòu),激發(fā)學(xué)生的學(xué)習(xí)潛能和學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的學(xué)習(xí)能力和應(yīng)用能力,使課堂充滿活力。2.樹立了學(xué)生學(xué)好數(shù)學(xué)建模的自信心。由于教法得當(dāng),優(yōu)化了教學(xué)內(nèi)容,加入了數(shù)學(xué)軟件的學(xué)習(xí),使學(xué)生成為了學(xué)習(xí)的主人,不再是知識(shí)的被動(dòng)接受者,而是通過(guò)親身實(shí)踐、主動(dòng)探索去學(xué)習(xí)發(fā)現(xiàn)知識(shí),從中體驗(yàn)到了成功的喜悅,克服困難的樂(lè)趣;降低了學(xué)習(xí)的難度,漸進(jìn)的內(nèi)容安排,使學(xué)生不再覺(jué)得數(shù)學(xué)建模難以學(xué)習(xí);而且內(nèi)容貼近生活實(shí)際,使學(xué)生不再認(rèn)為數(shù)學(xué)無(wú)用武之地,變要我學(xué)為我要學(xué)。
3.教師要善于組織、指導(dǎo)、監(jiān)控。教師組織安排教學(xué)內(nèi)容時(shí),必須要對(duì)教學(xué)內(nèi)容要有透徹的理解,教學(xué)設(shè)計(jì)要有較強(qiáng)針對(duì)性,切實(shí)可行,要使學(xué)生通過(guò)完成任務(wù),實(shí)現(xiàn)教學(xué)目標(biāo)、達(dá)到教學(xué)目的;在學(xué)生自主協(xié)作學(xué)習(xí)過(guò)程中,教師要注意監(jiān)控學(xué)生的學(xué)習(xí)進(jìn)程,了解學(xué)生學(xué)習(xí)過(guò)程中碰到有哪些困難,給予學(xué)生適當(dāng)?shù)闹笇?dǎo)或組織學(xué)生攻堅(jiān)克難。
數(shù)學(xué)建模論文13
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來(lái),各所高校的教師們都在努力的想辦法、找對(duì)策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問(wèn)題驅(qū)動(dòng)式的教學(xué)方法和基于PBL的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級(jí)中已經(jīng)實(shí)際應(yīng)用過(guò)幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識(shí)點(diǎn)太多,記不住了),而對(duì)思維的要求卻提高了。對(duì)大學(xué)生來(lái)說(shuō),每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長(zhǎng)久下去學(xué)生們會(huì)覺(jué)得很辛苦,很有壓力,會(huì)出現(xiàn)抱怨。筆者碰到過(guò)這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬(wàn)丈,可到后來(lái)興趣索然,馬虎應(yīng)對(duì)。怪學(xué)生嗎?誠(chéng)然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對(duì)學(xué)生提的這些問(wèn)題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會(huì)用到高等數(shù)學(xué)的知識(shí),那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過(guò)一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對(duì)付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問(wèn)題不及時(shí)解決,時(shí)間長(zhǎng)了一定會(huì)影響到大學(xué)生對(duì)高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會(huì)產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過(guò)了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對(duì)其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問(wèn)題反推解決問(wèn)題時(shí)我們需要的高等數(shù)學(xué)知識(shí)
有這樣一個(gè)實(shí)際問(wèn)題:報(bào)童每天清晨從報(bào)社購(gòu)進(jìn)報(bào)紙零售,晚上將沒(méi)賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購(gòu)進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有a>b>c。這就是說(shuō),報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購(gòu)進(jìn)的報(bào)紙?zhí),那么?huì)不夠賣,就會(huì)少賺錢;如果每天購(gòu)進(jìn)的報(bào)紙?zhí),那么?huì)賣不完,將要賠錢。請(qǐng)為報(bào)童規(guī)劃一下,他該如何確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來(lái)反推該問(wèn)題涉及到的高等數(shù)學(xué)的知識(shí):首先,通過(guò)分析題目可知,問(wèn)題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問(wèn)題的知識(shí)我們?cè)缇驼莆樟,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的'概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
其次,假設(shè)每天購(gòu)進(jìn)n份報(bào)紙,G(n)為報(bào)童購(gòu)進(jìn)n份報(bào)紙時(shí)的平均收入函數(shù),再假設(shè)每天的報(bào)紙需求量r是隨機(jī)的,此時(shí)r和n的關(guān)系有三種r>n,r
二、利用高等數(shù)學(xué)的解決實(shí)際問(wèn)題
由前面的假設(shè)可知,每天購(gòu)進(jìn)n份報(bào)紙,每天的報(bào)紙需求量為r份時(shí),報(bào)童每天的平均收入為G(n)元。如果這天的需求量r≤n,則他售出r份,退回n-r份;假如這天的需求量r>n,則n份報(bào)紙全部售光。因?yàn)槿招枨罅縭是隨機(jī)的,所以我們必須求出每天賣出r份的概率
f(r)[4]。如果求出了f(r),那么
G(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來(lái)求f(r),假定報(bào)童已經(jīng)通過(guò)自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
根據(jù)概率論中離散型隨機(jī)變量的連續(xù)化知識(shí)[4],我們可以將r視為連續(xù)型的隨機(jī)變量,這樣更便于分析和計(jì)算。利用最小二乘擬合[5],可以將f(r)轉(zhuǎn)化為連續(xù)型隨機(jī)變量r的概率密度函數(shù)p(r),那么(1)式變成
G(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過(guò)上面的分析,可知實(shí)際問(wèn)題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得G(n)最大。
研究表明G(n)是一個(gè)在閉區(qū)間上連續(xù)的積分上限函數(shù),由閉區(qū)間上連續(xù)函數(shù)的性質(zhì)可知G(n)的最大、最小值一定存在,而且最大、最小值一定在函數(shù)G(n)的駐點(diǎn)(也即使得=0的n)。計(jì)算可得
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識(shí)一定可以求出n。也即可以確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問(wèn)題,讓學(xué)生學(xué)會(huì)思考,給他們提供創(chuàng)造成就感的機(jī)會(huì)
通過(guò)上面碰到的實(shí)際問(wèn)題,可以很容易地說(shuō)服同學(xué)們靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^(guò)實(shí)際問(wèn)題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問(wèn)題(哪怕是很小的問(wèn)題),也需要大量的高等數(shù)學(xué)知識(shí)的儲(chǔ)備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡(jiǎn)單、直接,勝過(guò)老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問(wèn)題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們?cè)诮鉀Q實(shí)際問(wèn)題中學(xué)會(huì)思考,掌握知識(shí),提高能力。
通過(guò)訓(xùn)練后,碰到實(shí)際問(wèn)題,同學(xué)們會(huì)自然的想到我們的教學(xué)方法:(1)這些實(shí)際問(wèn)題涉及到的高等數(shù)學(xué)知識(shí)?那些自己掌握了,那些還沒(méi)有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識(shí)點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問(wèn)題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問(wèn)題,能否用高等數(shù)學(xué)的知識(shí)去解決?通過(guò)思考、分析、解決這些問(wèn)題,學(xué)生們會(huì)有一種創(chuàng)造創(chuàng)新的成就感,會(huì)愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會(huì)大大提高了。
數(shù)學(xué)建模論文14
數(shù)學(xué)概念教學(xué)中有效提問(wèn)的量化研究
大、中學(xué)數(shù)學(xué)教學(xué)銜接問(wèn)題的研究綜述
高中數(shù)學(xué)課程標(biāo)準(zhǔn)下選修課“數(shù)學(xué)史選講”教學(xué)研究
普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)與教學(xué)大綱課程編制的對(duì)比研究
新課標(biāo)下大學(xué)概率統(tǒng)計(jì)教學(xué)與中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的銜接探討
讓數(shù)學(xué)文化走進(jìn)課堂
高中學(xué)生數(shù)學(xué)建模能力與數(shù)學(xué)學(xué)業(yè)成績(jī)關(guān)系的調(diào)查與分析
高等數(shù)學(xué)與新課標(biāo)下高中數(shù)學(xué)教學(xué)內(nèi)容對(duì)接的研究
高一數(shù)學(xué)教學(xué)中如何解決好初高中銜接問(wèn)題
淺析高中數(shù)學(xué)生成性課堂的構(gòu)建策略
論數(shù)學(xué)文化視角下的中學(xué)數(shù)學(xué)課堂教學(xué)
高等數(shù)學(xué)與高中數(shù)學(xué)銜接改革的研究
高考數(shù)學(xué)應(yīng)用題的特點(diǎn)與啟示
數(shù)學(xué)課程發(fā)展的趨勢(shì)與思考
淺議向量在高考數(shù)學(xué)中的'應(yīng)用
實(shí)施分組分層教學(xué),提高課堂教學(xué)效率
培養(yǎng)反思思維習(xí)慣 促進(jìn)創(chuàng)新能力提高
數(shù)學(xué)歸納法在幾何教學(xué)中的應(yīng)用
提高高中數(shù)學(xué)教學(xué)質(zhì)量的措施探討
研究性學(xué)習(xí)的實(shí)施策略與實(shí)踐
向量在立體幾何中的應(yīng)用
新課標(biāo)體系下高中數(shù)學(xué)對(duì)大學(xué)工科數(shù)學(xué)教學(xué)產(chǎn)生的問(wèn)題分析及對(duì)策探索
高中新課標(biāo)下的高等數(shù)學(xué)教學(xué)內(nèi)容改革
淺談高中數(shù)學(xué)導(dǎo)學(xué)案教學(xué)中存在的問(wèn)題及對(duì)策
高中數(shù)學(xué)教育現(xiàn)狀分析及探討
合理使用幾何畫板帶領(lǐng)學(xué)生進(jìn)入數(shù)學(xué)微觀世界
高等數(shù)學(xué)和新課標(biāo)下中學(xué)數(shù)學(xué)的脫節(jié)與銜接問(wèn)題的研究與探索
高中數(shù)學(xué)教材中的數(shù)學(xué)史對(duì)大學(xué)數(shù)學(xué)教學(xué)的啟示
淺談數(shù)學(xué)教學(xué)中的抽象概括能力
淺談一般數(shù)列的求和問(wèn)題
青年教師怎樣在研究課例中成長(zhǎng)
立足課堂教學(xué) 提高學(xué)生的數(shù)學(xué)能力——以柯西不等式一課教學(xué)為例
雙互動(dòng)四統(tǒng)一教學(xué)范式在數(shù)學(xué)歸納法教學(xué)中的運(yùn)用
影響高中生數(shù)學(xué)解題的心理因素探究
空間向量在立體幾何中的運(yùn)用
函數(shù)思想在解題中的應(yīng)用
有效利用幾何畫板 促進(jìn)數(shù)學(xué)課堂教學(xué)
影響高中學(xué)生數(shù)學(xué)成績(jī)的原因及解決辦法
探析高中數(shù)學(xué)如何培養(yǎng)學(xué)生健康的心理素質(zhì)
高等數(shù)學(xué)教學(xué)對(duì)高職新生的適應(yīng)性研究
提升高中數(shù)學(xué)多媒體輔助教學(xué)效率的思考
多媒體技術(shù)條件下高中數(shù)學(xué)教學(xué)有效性探究
數(shù)學(xué)教學(xué)中運(yùn)用多媒體技術(shù)的優(yōu)勢(shì)和不足
巧用“學(xué)案導(dǎo)學(xué)”模式,提升學(xué)生數(shù)學(xué)解題能力
淺談高中數(shù)學(xué)教學(xué)的幾點(diǎn)體會(huì)
將幾何畫板有效融入高中數(shù)學(xué)日常教學(xué)——《曲線與方程》的教學(xué)實(shí)踐與思考
及時(shí)用好電腦軟件 克服懼怕數(shù)學(xué)心理——以高中數(shù)學(xué)回歸分析為例
小構(gòu)造 再求導(dǎo) 大智慧——例談“二次求導(dǎo)”在函數(shù)問(wèn)題中的應(yīng)用
探究新時(shí)期特色高中數(shù)學(xué)教育教學(xué)
情感教育的滲透在高中數(shù)學(xué)教學(xué)中的作用研究
推廣數(shù)學(xué)建模教學(xué)促進(jìn)高中基礎(chǔ)教育改革
高中數(shù)學(xué)課程教學(xué)改革探討
“學(xué)案探究”模式在高中數(shù)學(xué)教學(xué)中的應(yīng)用
淺談高中數(shù)學(xué)研究性學(xué)習(xí)
數(shù)學(xué)建模論文15
前言
創(chuàng)新人才的培養(yǎng)是新的時(shí)代對(duì)高等教育提出的新要求。培養(yǎng)高質(zhì)量、高層次人才不僅需要傳統(tǒng)意義上的邏輯思維能力、推理演算能力,更需要具備對(duì)所涉及的專業(yè)問(wèn)題建立數(shù)學(xué)模型,進(jìn)行數(shù)學(xué)實(shí)驗(yàn),利用先進(jìn)的計(jì)算工具、數(shù)學(xué)軟件進(jìn)行數(shù)值求解和做出定量分析的能力。
因此,如何培養(yǎng)學(xué)生的求知欲,如何培養(yǎng)學(xué)生的學(xué)習(xí)積極性,如何培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力已成為高等教育迫切需要解決的問(wèn)題[1]。
在數(shù)學(xué)教學(xué)中,傳統(tǒng)的數(shù)學(xué)教學(xué)往往注重知識(shí)的傳授、公式的推導(dǎo)、定理的證明以及應(yīng)用能力的培養(yǎng)。盡管這種模式并非一無(wú)是處,甚至有時(shí)還相當(dāng)成功,但它不能有效地激發(fā)廣大學(xué)生的求知欲,不能有效地培養(yǎng)學(xué)生的學(xué)習(xí)積極性,不能有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。
而如何培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力,既沒(méi)有現(xiàn)成的模式可循,也沒(méi)有既定的方法可套用,只能靠廣大教師不斷探索和實(shí)踐。
近年來(lái),國(guó)內(nèi)幾乎所有大學(xué)都相繼開設(shè)了數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課,在人才培養(yǎng)和學(xué)科競(jìng)賽上都取得了顯著的成效。數(shù)學(xué)建模是指對(duì)特定的現(xiàn)象,為了某一目的作一些必要的簡(jiǎn)化和假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)理論得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),這個(gè)數(shù)學(xué)結(jié)構(gòu)即為數(shù)學(xué)模型,建立這個(gè)數(shù)學(xué)模型的過(guò)程即為數(shù)學(xué)建模[2]。
所謂數(shù)學(xué)教學(xué)中的數(shù)學(xué)實(shí)驗(yàn),就是從給定的實(shí)際問(wèn)題出發(fā),借助計(jì)算機(jī)和數(shù)學(xué)軟件,讓學(xué)生在數(shù)字化的實(shí)驗(yàn)中去學(xué)習(xí)和探索,并通過(guò)自己設(shè)計(jì)和動(dòng)手,去體驗(yàn)問(wèn)題解決的教學(xué)活動(dòng)過(guò)程。數(shù)學(xué)實(shí)驗(yàn)是數(shù)學(xué)建模的延伸,是數(shù)學(xué)學(xué)科知識(shí)在計(jì)算機(jī)上的實(shí)現(xiàn),從而使高度抽象的數(shù)學(xué)理論成為生動(dòng)具體的可視性過(guò)程。
因此,數(shù)學(xué)實(shí)驗(yàn)就是一個(gè)以學(xué)生為主體,以實(shí)際問(wèn)題為載體,以計(jì)算機(jī)為媒體,以數(shù)學(xué)軟件為工具,以數(shù)學(xué)建模為過(guò)程,以優(yōu)化數(shù)學(xué)模型為目標(biāo)的數(shù)學(xué)教學(xué)活動(dòng)過(guò)程[3—7]。
因此,如何把實(shí)際問(wèn)題與所學(xué)的數(shù)學(xué)知識(shí)聯(lián)系起來(lái);如何根據(jù)實(shí)際問(wèn)題提煉數(shù)學(xué)模型;建模的方法和技巧;數(shù)學(xué)模型所涉及到的各類算法以及這些算法在相應(yīng)數(shù)學(xué)軟件平臺(tái)上的實(shí)現(xiàn)等問(wèn)題就成了我們研究的重點(diǎn),F(xiàn)結(jié)合教學(xué)實(shí)踐,談?wù)劰P者在數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課的教學(xué)中總結(jié)的幾點(diǎn)看法。
1掌握數(shù)學(xué)語(yǔ)言獨(dú)有的特點(diǎn)和表達(dá)形式
準(zhǔn)確使用數(shù)學(xué)語(yǔ)言模擬現(xiàn)實(shí)模型數(shù)學(xué)語(yǔ)言是表達(dá)數(shù)學(xué)思想的專門語(yǔ)言,它是自然語(yǔ)言發(fā)展到高級(jí)狀態(tài)時(shí)的特殊形式,是人類基于思維、認(rèn)知的特殊需要,按照公有思維、認(rèn)知法則而制造出來(lái)的語(yǔ)言及其體系,給人們提供一套完整的并不斷精細(xì)、完善、完美的思維和認(rèn)知程序、規(guī)則、方法。
用數(shù)學(xué)語(yǔ)言進(jìn)行交流和良好的符號(hào)意識(shí)是重要的數(shù)學(xué)素質(zhì)。數(shù)學(xué)建模教學(xué)是以訓(xùn)練學(xué)生的思維為核心,而語(yǔ)言和思維又是密不可分的。能否成功地進(jìn)行數(shù)學(xué)交流,不僅涉及一個(gè)人的數(shù)學(xué)能力,而且也涉及到一個(gè)人的思路是否開闊,頭腦是否開放,是否尊重并且愿意考慮各方面的不同意見,是否樂(lè)于接受新的思想感情觀念和新的行為方式。數(shù)學(xué)建模是利用數(shù)學(xué)語(yǔ)言模擬現(xiàn)實(shí)的模型,把現(xiàn)實(shí)模型抽象、簡(jiǎn)化為某種數(shù)學(xué)結(jié)構(gòu)是數(shù)學(xué)模型的基本特征。
現(xiàn)實(shí)問(wèn)題要通過(guò)數(shù)學(xué)方法獲得解決,首先必須將其中的非數(shù)學(xué)語(yǔ)言數(shù)學(xué)化,摒棄其中表面的具體敘述,抽象出其中的數(shù)學(xué)本質(zhì),形成數(shù)學(xué)模型。通過(guò)分析現(xiàn)實(shí)中的數(shù)學(xué)現(xiàn)象,對(duì)常見的數(shù)學(xué)現(xiàn)象進(jìn)行數(shù)學(xué)語(yǔ)言描述,從而將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題來(lái)解決。
2借助數(shù)學(xué)建模教學(xué)使學(xué)生學(xué)會(huì)使用數(shù)學(xué)語(yǔ)言構(gòu)建數(shù)學(xué)模型
根據(jù)現(xiàn)階段普通高校學(xué)生年齡特點(diǎn)和知識(shí)結(jié)構(gòu),我們可以通過(guò)數(shù)學(xué)建模對(duì)學(xué)生加強(qiáng)數(shù)學(xué)語(yǔ)言能力的培養(yǎng),讓他們熟練掌握數(shù)學(xué)語(yǔ)言,以期提升學(xué)生的形象思維、抽象思維、邏輯推理和表達(dá)能力,提高學(xué)生的數(shù)學(xué)素質(zhì)和數(shù)學(xué)能力。在數(shù)學(xué)建模教學(xué)過(guò)程中,教師要力求做到用詞準(zhǔn)確,敘述精煉,前后連貫,邏輯性強(qiáng)。在問(wèn)題的重述和分析中揭示數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)性;在數(shù)學(xué)符號(hào)說(shuō)明和模型的建立求解中揭示數(shù)學(xué)語(yǔ)言的簡(jiǎn)約性,彰顯數(shù)學(xué)語(yǔ)言的邏輯性、精確性和情境性,突出數(shù)學(xué)符號(hào)語(yǔ)言含義的深刻性;在模型的分析和結(jié)果的羅列中,顯示圖表語(yǔ)言的直觀性,展示數(shù)學(xué)語(yǔ)言的確定意義、語(yǔ)義和語(yǔ)法;在模型的應(yīng)用和推廣中,顯示出數(shù)學(xué)符號(hào)語(yǔ)言的推動(dòng)力的獨(dú)特魅力。
而在學(xué)生的書面作業(yè)或論文報(bào)告中,注意培養(yǎng)學(xué)生數(shù)學(xué)語(yǔ)言表達(dá)的規(guī)范性。書面表達(dá)是數(shù)學(xué)語(yǔ)言表達(dá)能力的一種重要形式。通過(guò)教師數(shù)學(xué)建模教學(xué)表述規(guī)范的樣板和學(xué)生嚴(yán)格的書面表達(dá)的長(zhǎng)期訓(xùn)練來(lái)完成。在書面表達(dá)上,主要應(yīng)做到思維清晰、敘述簡(jiǎn)潔、書寫規(guī)范。例如在建立模型和求解上,嚴(yán)格要求學(xué)生在模型的假設(shè),符號(hào)說(shuō)明、模型的建立和求解,圖形的繪制、變量的限制范圍、模型的分析與推廣方面,做到嚴(yán)謹(jǐn)規(guī)范。
對(duì)學(xué)生在利用建模解決問(wèn)題時(shí)使用符號(hào)語(yǔ)言的不準(zhǔn)確、不規(guī)范、不簡(jiǎn)潔等方面要及時(shí)糾正。
3借助數(shù)學(xué)實(shí)驗(yàn)教學(xué),展示高度抽象
的數(shù)學(xué)理論成為具體的可視性過(guò)程要培養(yǎng)創(chuàng)新人才,上好數(shù)學(xué)實(shí)驗(yàn)課,首先要有創(chuàng)新型的教師,建立起一支"懂實(shí)驗(yàn)""會(huì)試驗(yàn)""能創(chuàng)新"的'教師隊(duì)伍。由于數(shù)學(xué)實(shí)驗(yàn)課理論聯(lián)系實(shí)際,特點(diǎn)鮮明,內(nèi)容新穎,方法特別,所以能夠上好數(shù)學(xué)實(shí)驗(yàn)課,教師就必須具備扎實(shí)的數(shù)學(xué)理論功底,計(jì)算機(jī)軟件應(yīng)用操作能力,良好的科研素質(zhì)與科研能力。
因此,數(shù)學(xué)與統(tǒng)計(jì)學(xué)院就需要選取部分教師,主攻數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)、數(shù)值分析課程。優(yōu)先選派數(shù)學(xué)實(shí)驗(yàn)教師定期出去進(jìn)修深造提高,以便真正形成一支"懂實(shí)驗(yàn)""會(huì)實(shí)驗(yàn)""能創(chuàng)新"的教師隊(duì)伍。實(shí)驗(yàn)課的地位要給予應(yīng)有的重視。我院現(xiàn)存的一個(gè)重要表現(xiàn)就是實(shí)驗(yàn)設(shè)備不足,實(shí)驗(yàn)室開放時(shí)間不夠。為了確保數(shù)學(xué)實(shí)驗(yàn)有物質(zhì)條件上的保證,必須建立數(shù)學(xué)實(shí)驗(yàn)與數(shù)學(xué)建模實(shí)驗(yàn)室。
配備足夠的高性能計(jì)算機(jī),全天候?qū)W(xué)生開放,盡快盡早淘汰陳舊的計(jì)算機(jī)設(shè)備。精心設(shè)計(jì)實(shí)驗(yàn)內(nèi)容,強(qiáng)化典型實(shí)驗(yàn),培養(yǎng)寬厚扎實(shí)理論水平;精選實(shí)驗(yàn)內(nèi)容,加強(qiáng)學(xué)生之間的互動(dòng),培養(yǎng)協(xié)作意識(shí)和團(tuán)隊(duì)精神。在實(shí)驗(yàn)教學(xué)時(shí)數(shù)有限的情況下,依據(jù)培養(yǎng)目標(biāo)和教學(xué)綱要,對(duì)教材中的實(shí)驗(yàn)內(nèi)容進(jìn)行選擇、設(shè)計(jì)。要最大限度地開發(fā)學(xué)生的創(chuàng)造性思維,數(shù)學(xué)實(shí)驗(yàn)在項(xiàng)目設(shè)計(jì)過(guò)程中應(yīng)當(dāng)遵循適應(yīng)性、趣味性、靈活性、科學(xué)性、漸進(jìn)性和應(yīng)用性的基本原則。
選擇基礎(chǔ)性試驗(yàn),重點(diǎn)培養(yǎng)寬厚扎實(shí)的理論水平,提高對(duì)數(shù)學(xué)理論與方法的深刻理解。熟練各種數(shù)學(xué)軟件的應(yīng)用與開發(fā),提高計(jì)算機(jī)應(yīng)用能力,增強(qiáng)實(shí)踐應(yīng)用技能;增加綜合性實(shí)驗(yàn)和設(shè)計(jì)性實(shí)驗(yàn),從實(shí)際問(wèn)題出發(fā),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力,強(qiáng)化創(chuàng)新思維的開發(fā)。
教學(xué)方法上實(shí)行啟發(fā)參與式教學(xué)法:?jiǎn)l(fā)—參與—誘導(dǎo)—提高。充分發(fā)揮學(xué)生主體作用,以學(xué)生親自動(dòng)腦動(dòng)手為主。
教師先提出問(wèn)題,對(duì)實(shí)驗(yàn)內(nèi)容,實(shí)驗(yàn)?zāi)繕?biāo),進(jìn)行必要的啟發(fā);然后充分發(fā)揮學(xué)生主體作用,學(xué)生動(dòng)手操作,每個(gè)命令、語(yǔ)句學(xué)生都要在計(jì)算機(jī)上操作得到驗(yàn)證;根據(jù)學(xué)生出現(xiàn)的情況,老師總結(jié)學(xué)生出現(xiàn)的問(wèn)題,進(jìn)行進(jìn)一步的誘導(dǎo);再讓其理清思路,再次動(dòng)手實(shí)踐,從理論與實(shí)踐的結(jié)合上獲得能力上提高。數(shù)學(xué)實(shí)驗(yàn)是一門強(qiáng)調(diào)實(shí)踐、強(qiáng)調(diào)應(yīng)用的課程。
數(shù)學(xué)實(shí)驗(yàn)將數(shù)學(xué)知識(shí)、數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用三者融為一體,可以使學(xué)生深入理解數(shù)學(xué)的基本概念和理論,掌握數(shù)值計(jì)算方法,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)使用計(jì)算機(jī)解決實(shí)際問(wèn)題的能力,是一門實(shí)踐性很強(qiáng)的課程。在這一教學(xué)活動(dòng)中,通過(guò)數(shù)學(xué)軟件如MAT—LAB、Mathematica、SPSS的教學(xué)和綜合數(shù)學(xué)實(shí)驗(yàn),如碎片拼接、罪犯藏匿地點(diǎn)的查找、光伏電池的連接、野外漂流管理、水資源的有效利用、葡萄酒的分類等,通這些實(shí)際問(wèn)題最終的數(shù)學(xué)化的解決,將高度抽象的數(shù)學(xué)理論呈現(xiàn)為生動(dòng)具體的可視性結(jié)論,展示數(shù)學(xué)模型與計(jì)算機(jī)技術(shù)相結(jié)合的高度抽象的數(shù)學(xué)理論成為生動(dòng)具體的可視性過(guò)程。
4突出學(xué)生的主體作用,循序漸進(jìn)培養(yǎng)學(xué)生學(xué)習(xí)、實(shí)踐到創(chuàng)新
實(shí)踐教學(xué)的目的是要提高學(xué)生應(yīng)用所學(xué)知識(shí)分析、解決實(shí)際問(wèn)題的綜合能力。
在教學(xué)中,搭建數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)這個(gè)平臺(tái),提示學(xué)生用計(jì)算機(jī)解決經(jīng)過(guò)簡(jiǎn)化的問(wèn)題,或自己提出實(shí)驗(yàn)問(wèn)題,設(shè)計(jì)實(shí)驗(yàn)步驟,觀察實(shí)驗(yàn)結(jié)果,尤其是將龐大繁雜的數(shù)學(xué)計(jì)算交給計(jì)算機(jī)完成,擺脫過(guò)去害怕數(shù)學(xué)計(jì)算、畫函數(shù)圖像、解方程等任務(wù),避免學(xué)生一見到龐大的數(shù)學(xué)計(jì)算公式就會(huì)產(chǎn)生畏懼心理,從而喪失信心,讓學(xué)生體會(huì)到在數(shù)學(xué)面前自己由弱者變成了強(qiáng)者,由失敗者變成了勝利者、成功者。
再設(shè)計(jì)讓學(xué)生自己動(dòng)手去解決的各類實(shí)際問(wèn)題,使學(xué)生通過(guò)對(duì)實(shí)際問(wèn)題的仔細(xì)分析、作出合理假設(shè)、建立模型、求解模型及對(duì)結(jié)果進(jìn)行分析、檢驗(yàn)、總結(jié)等,解決實(shí)際問(wèn)題,逐步培養(yǎng)學(xué)生熟練使用計(jì)算機(jī)和數(shù)學(xué)軟件的能力以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的意識(shí)和能力。
同時(shí),給學(xué)生提供大量的上機(jī)實(shí)踐的機(jī)會(huì),提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力。一個(gè)實(shí)際問(wèn)題構(gòu)成一個(gè)實(shí)驗(yàn)內(nèi)容,通過(guò)實(shí)踐環(huán)節(jié)加大訓(xùn)練力度,并要求學(xué)生通過(guò)計(jì)算機(jī)編程求解、編寫實(shí)驗(yàn)報(bào)告等形式,達(dá)到提高學(xué)生解決實(shí)際問(wèn)題綜合能力的目標(biāo)。數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)課程通過(guò)實(shí)際問(wèn)題——方法與分析——范例——軟件——實(shí)驗(yàn)——綜合練習(xí)的教學(xué)過(guò)程,以實(shí)際問(wèn)題為載體,以大學(xué)基本數(shù)學(xué)知識(shí)為基礎(chǔ),采用自學(xué)、講解、討論、試驗(yàn)、文獻(xiàn)閱讀等方式,在教師的逐步指導(dǎo)下,學(xué)習(xí)基本的建模與計(jì)算方法。
通過(guò)學(xué)習(xí)查閱文獻(xiàn)資料、用所學(xué)的數(shù)學(xué)知識(shí)和計(jì)算機(jī)技術(shù),借助適當(dāng)?shù)臄?shù)學(xué)軟件,學(xué)會(huì)用數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題的一些基本技巧與方法。通過(guò)實(shí)驗(yàn)過(guò)程的學(xué)習(xí),加深學(xué)生對(duì)數(shù)學(xué)的了解,使同學(xué)們應(yīng)用數(shù)學(xué)方法的能力和發(fā)散性思維的能力得到進(jìn)一步的培養(yǎng)。實(shí)踐已證明,數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)課這門課深受學(xué)生歡迎,它的教學(xué)無(wú)論對(duì)培養(yǎng)創(chuàng)新型人才還是應(yīng)用型人才都能發(fā)揮其他課程無(wú)法替代的作用。
5具體的教學(xué)策略和途徑
數(shù)學(xué)建模課程和數(shù)學(xué)實(shí)驗(yàn)課程同時(shí)開設(shè),在課程教學(xué)中,要盡可能做到如下幾個(gè)方面:
1)注重背景的闡述
讓學(xué)生了解問(wèn)題背景,才能知道解決實(shí)際問(wèn)題需要哪些知識(shí),才能做出貼近實(shí)際的假設(shè),而這恰恰是建立一個(gè)能夠解決實(shí)際問(wèn)題的數(shù)學(xué)模型的前提。再者,問(wèn)題背景越是清晰,越能夠體現(xiàn)問(wèn)題的重要性,這樣才能激發(fā)學(xué)生解決實(shí)際問(wèn)題的興趣。
2)注重模型建立與求解過(guò)程中的數(shù)學(xué)語(yǔ)言的使用
在做好實(shí)際問(wèn)題的簡(jiǎn)化后,使用精煉的數(shù)學(xué)符號(hào)表示現(xiàn)實(shí)含義是數(shù)學(xué)語(yǔ)言使用的彰顯;诒匾谋尘爸R(shí),建立符合現(xiàn)實(shí)的數(shù)學(xué)模型,通過(guò)多個(gè)方面對(duì)模型進(jìn)行修正,向?qū)W生展示不同的條件相對(duì)應(yīng)的數(shù)學(xué)模型對(duì)于現(xiàn)實(shí)問(wèn)題的解決。在模型的求解上,嚴(yán)格要求學(xué)生在模型的假設(shè),符號(hào)說(shuō)明、圖形的繪制、變量的限制范圍、模型的分析與推廣方面,做到嚴(yán)謹(jǐn)規(guī)范。對(duì)學(xué)生在利用建模解決問(wèn)題時(shí)使用符號(hào)語(yǔ)言的不準(zhǔn)確、不規(guī)范、不簡(jiǎn)潔等方面及時(shí)糾正。
3)注重經(jīng)典算法的數(shù)學(xué)軟件的實(shí)現(xiàn)和改進(jìn)
由于實(shí)際問(wèn)題的特殊性導(dǎo)致數(shù)學(xué)模型沒(méi)有固定的模式,這就要求既要熟練掌握一般數(shù)學(xué)軟件和算法的實(shí)現(xiàn),又要善于改進(jìn)和總結(jié),使得現(xiàn)有的算法和程序能夠通過(guò)修正來(lái)解決實(shí)際問(wèn)題,這對(duì)于學(xué)生能力的培養(yǎng)不可或缺。只有不斷的學(xué)習(xí)和總結(jié),才有數(shù)學(xué)素養(yǎng)的培養(yǎng)和創(chuàng)新能力的提高。
參考文獻(xiàn):
[1]葉其孝。把數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)的思想和方法融人高等數(shù)學(xué)課的教學(xué)中去[J]。工程數(shù)學(xué)學(xué)報(bào),20xx,(8):1—11。
[2]顏榮芳,張貴倉(cāng),李永祥,F(xiàn)代信息技術(shù)支持的數(shù)學(xué)建模創(chuàng)新教育[J]。電化教育研究,20xx,(3)。
[3]鄭毓信。數(shù)學(xué)方法論的理論與實(shí)踐[M]。廣西教育出版社,20xx。
[4]姜啟源。數(shù)學(xué)實(shí)驗(yàn)與數(shù)學(xué)建模[J]。數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),20xx,(5):613—617。
[5]姜啟源,謝金星,葉俊。數(shù)學(xué)建模[M]。第3版。北京:高等教育出版社,20xx。
[6]周家全,陳功平。論數(shù)學(xué)建模教學(xué)活動(dòng)與數(shù)學(xué)素質(zhì)的培養(yǎng)[J]。中山大學(xué)學(xué)報(bào),20xx,(4):79—80。
[7]付桐林。數(shù)學(xué)建模教學(xué)與創(chuàng)新能力培養(yǎng)[J]。教育導(dǎo)刊,20xx,(08):89—90。
【數(shù)學(xué)建模論文】相關(guān)文章:
數(shù)學(xué)建模論文07-02
數(shù)學(xué)建模論文模板01-25
數(shù)學(xué)建模論文模板07-22
數(shù)學(xué)建模論文經(jīng)典[15篇]07-08
數(shù)學(xué)建模范文03-13