午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

九年級(jí)上冊(cè)數(shù)學(xué)期末試題及答案(2)

時(shí)間:2024-11-06 01:37:47 學(xué)人智庫(kù) 我要投稿
  • 相關(guān)推薦

九年級(jí)上冊(cè)數(shù)學(xué)期末試題及答案(2)

  得 9a+3+ =1,

九年級(jí)上冊(cè)數(shù)學(xué)期末試題及答案(2)

  ∴a= - .

 、 相交 ……………………………………………2分

  由 - x2-x+ =0, ……………………………3分

  得 x= - 1± .

  ∴ 交點(diǎn)坐標(biāo)是(- 1± ,0). ……………………………4分

 、 酌情給分 ……………………………………………5分

  19. 給第⑴小題分配1分,第⑵、⑶小題各分配2分.

  20. ⑴ 0.4 ……………………………………………2分

 、 0.6 ……………………………………………4分

  列表(或畫(huà)樹(shù)狀圖)正確 ……………………………………5分

  21. ⑴把點(diǎn)A( ,- 1)代入y1= - ,得 –1= - ,

  ∴ a=3. ……………………………………………1分

  設(shè)y2= ,把點(diǎn)A( ,- 1)代入,得 k=– ,

  ∴ y2=– . ……………………………………2分

 、飘(huà)圖; ……………………………………3分

  ⑶由圖象知:當(dāng)x<0, 或x> 時(shí),y1

  22. ⑴如圖,矩形ABCD中,AB= 2r1=2dm,即r1=1dm. ………………………………1分

  BC=3dm,⊙O2應(yīng)與⊙O1及BC、CD都相切.

  連結(jié)O1 O2,過(guò)O1作直線(xiàn)O1E∥AB,過(guò)O2作直線(xiàn)O2E∥BC,則O1E⊥O2E.

  在Rt△O1 O2E中,O1 O2=r1+ r2,O1E= r1– r2,O2E=BC–(r1+ r2).

  由 O1 O22= O1E2+ O2E2,

  即(1+ r2)2 = (1– r2)2+(2– r2)2.

  解得,r2= 4±2 . 又∵r2<2,

  ∴r1=1dm, r2=(4–2 )dm. ………………3分

 、撇荒. …………………………………………4分

  ∵r2=(4–2 )> 4–2×1.75= (dm),

  即r2> dm.,又∵CD=2dm,

  ∴CD<4 r2,故不能再裁出所要求的圓鐵片. …………………………………5分

  23. ⑴相切. …………………………………………1分

  證明:連結(jié)AN,

  ∵AB是直徑,

  ∴∠ANB=90°.

  ∵AB=AC,

  ∴∠BAN= ∠A=∠CBP.

  又∵∠BAN+∠ABN=180°-∠ANB= 90°,

  ∴∠CBP+∠ABN=90°,即AB⊥BP.

  ∵AB是⊙O的直徑,

  ∴直線(xiàn)BP與⊙O相切. …………………………………………3分

  ⑵∵在Rt△ABN中,AB=2,tan∠BAN= tan∠CBP=0.5,

  可求得,BN= ,∴BC= . …………………………………………4分

  作CD⊥BP于D,則CD∥AB, .

  在Rt△BCD中,易求得CD= ,BD= . …………………………………5分

  代入上式,得 = .

  ∴CP= . …………………………………………6分

  ∴DP= .

  ∴BP=BD+DP= + = . …………………………………………7分

  24. ⑴依題意,點(diǎn)B和E關(guān)于MN對(duì)稱(chēng),則ME=MB=4-AM.

  再由AM2+AE2=ME2=(4-AM)2,得AM=2- . ……………………1分

  作MF⊥DN于F,則MF=AB,且∠BMF=90°.

  ∵M(jìn)N⊥BE,∴∠ABE= 90°-∠BMN.

  又∵∠FMN =∠BMF -∠BMN=90°-∠BMN,

  ∴∠FMN=∠ABE.

  ∴Rt△FMN≌Rt△ABE.

  ∴FN=AE=x,DN=DF+FN=AM+x=2- +x. ………………………2分

  ∴S= (AM+DN)×AD

  =(2- + )×4

  = - +2x+8. ……………………………3分

  其中,0≤x<4. ………………………………4分

 、啤逽= - +2x+8= - (x-2)2+10,

  ∴當(dāng)x=2時(shí),S最大=10; …………………………………………5分

  此時(shí),AM=2- ×22=1.5 ………………………………………6分

  答:當(dāng)AM=1.5時(shí),四邊形AMND的面積最大,為10.

  ⑶不能,0

  25. ⑴∵△AOB∽△BOC(相似比不為1),

  ∴ . 又∵OA=4, OB=3,

  ∴OC=32× = . ∴點(diǎn)C( , 0). …………………1分

  設(shè)圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)解析式是y=ax2+bx+c,

  則c= -3,且 …………………2分

  即

  解得,a= , b= .

  ∴這個(gè)函數(shù)的解析式是y = x2+ x-3. …………………3分

 、啤摺鰽OB∽△BOC(相似比不為1),

  ∴∠BAO=∠CBO.

  又∵∠ABO+ ∠BAO =90°,

  ∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分

  ∴AC是△ABC外接圓的直徑.

  ∴ r = AC= ×[ -(-4)]= . ………………5分

 、恰唿c(diǎn)N在以BM為直徑的圓上,

  ∴ ∠MNB=90°. ……………………6分

  ①. 當(dāng)AN=ON時(shí),點(diǎn)N在OA的中垂線(xiàn)上,

  ∴點(diǎn)N1是AB的中點(diǎn),M1是AC的中點(diǎn).

  ∴AM1= r = ,點(diǎn)M1(- , 0),即m1= - . ………………7分

  ②. 當(dāng)AN=OA時(shí),Rt△AM2N2≌Rt△ABO,

  ∴AM2=AB=5,點(diǎn)M2(1, 0),即m2=1.

 、. 當(dāng)ON=OA時(shí),點(diǎn)N顯然不能在線(xiàn)段AB上.

  綜上,符合題意的點(diǎn)M(m,0)存在,有兩解:

  m= - ,或1. ……………………8分

【九年級(jí)上冊(cè)數(shù)學(xué)期末試題及答案(2)】相關(guān)文章:

應(yīng)聘秘書(shū)的筆試題及答案(2)10-27

電信筆試題目及答案(2)06-05

成人高考語(yǔ)文試題及答案(2)05-22

小升初數(shù)學(xué)測(cè)試題及答案06-25

河北中考數(shù)學(xué)試題及答案09-07

安徽中考數(shù)學(xué)試題及答案08-18

考研英語(yǔ)模擬試題及答案解析(2)06-12

考研英語(yǔ)一試題及答案(2)10-18

南京中考數(shù)學(xué)試題及答案08-07

9月一級(jí)MSOffice試題及答案(2)09-26