- 相關(guān)推薦
鋁合金的激光焊接工藝難點(diǎn)分析
鋁合金焊接技術(shù)
鋁合金具有高比強(qiáng)度、高疲勞強(qiáng)度以及良好的斷裂韌性和較低的裂紋擴(kuò)展率,同時(shí)還具有優(yōu)良的成形工藝性和良好的抗腐蝕性,在航空、航天、汽車、機(jī)械制造、船舶及化學(xué)工業(yè)中已被大量應(yīng)用。鋁合金的廣泛應(yīng)用促進(jìn)了鋁合金焊接技術(shù)的發(fā)展,同時(shí)焊接技術(shù)的發(fā)展又拓展了鋁合金的應(yīng)用領(lǐng)域。
不過,鋁合金本身的特性使得其相關(guān)的焊接技術(shù)面臨著一些亟待解決的問題:表面難熔的氧化膜、接頭軟化、易產(chǎn)生氣孔、容易熱變形以及熱導(dǎo)率過大等。傳統(tǒng)的鋁合金焊接一般采用TIG焊或MIG焊工藝,雖然這兩種焊接方式能量密度較大,焊接鋁合金時(shí)能獲得良好的接頭,但仍然存在熔透能力差、焊接變形大、生產(chǎn)效率低等缺點(diǎn),于是人們開始尋求新的焊接方法,20世紀(jì)中后期激光技術(shù)逐漸開始應(yīng)用于工業(yè)。歐洲空中客車公司生產(chǎn)的A340飛機(jī)機(jī)身,就采用激光焊接技術(shù)取代原有的鉚接工藝,使機(jī)身的重量減輕18%左右,制造成本降低了近25%。德國奧迪公司A2和A8全鋁結(jié)構(gòu)轎車也獲益于鋁合金激光焊接技術(shù)的開發(fā)和應(yīng)用。這些成功的事例大大促使對激光焊接鋁合金的研究,激光技術(shù)已經(jīng)成為了未來鋁合金焊接技術(shù)的主要發(fā)展方向。激光焊接具有功率密度高、焊接熱輸入低、焊接熱影響區(qū)小和焊接變形小等優(yōu)點(diǎn),使其在鋁合金焊接領(lǐng)域受到格外的重視。
鋁合金激光焊接的問題和對策
1.鋁合金表面的高反射性和高導(dǎo)熱性
這一特點(diǎn)可以用鋁合金的微觀結(jié)構(gòu)來解釋。由于鋁合金中存在密度很大的自由電子,自由電子受到激光(強(qiáng)烈的電磁波)強(qiáng)迫震動而產(chǎn)生次級電磁波,造成強(qiáng)烈的反射波和較弱的透射波,因而鋁合金表面對激光具有較高的反射率和很小的吸收率。同時(shí),自由電子的布朗運(yùn)動受激而變得更為劇烈,所以鋁合金也具有很高的導(dǎo)熱性。
針對鋁合金對激光的高反射性,國內(nèi)外已作了大量研究,試驗(yàn)結(jié)果表明,進(jìn)行適當(dāng)?shù)谋砻骖A(yù)處理如噴砂處理、砂紙打磨、表面化學(xué)浸蝕、表面鍍、石墨涂層、空氣爐中氧化等均可以降低光束反射,有效地增大鋁合金對光束能量的吸收。另外,從焊接結(jié)構(gòu)設(shè)計(jì)方面考慮,在鋁合金表面人工制孔或采用光收集器形式接頭,開V形坡口或采用拼焊(拼接間隙相當(dāng)于人工制孔)方法,都可以增加鋁合金對激光的吸收,獲得較大的熔深。另外,還可以利用合理設(shè)計(jì)焊接縫隙來增加鋁合金表面對激光能量的吸收。
2.小孔效應(yīng)及等離子體對鋁合金激光焊接的影響
在鋁合金激光焊接過程中,小孔的出現(xiàn)可以大大提高材料對激光的吸收率,焊接可以獲得更多的能量,而鋁元素以及鋁合金中的Mg、Zn、Li沸點(diǎn)低、易蒸發(fā)且蒸汽壓大,雖然這有助于小孔的形成,但等離子體的冷卻作用(等離子體對能量的屏蔽和吸收,減少了激光對母材的能量輸入)使得等離子體本身"過熱",卻阻礙了小孔維持連續(xù)存在,容易產(chǎn)生氣孔等焊接缺陷,從而影響焊接成形和接頭的力學(xué)性能,所以小孔的誘導(dǎo)和穩(wěn)定成為保證激光焊接質(zhì)量的一個重點(diǎn)。
由于鋁合金的高反射性和高導(dǎo)熱性,要誘導(dǎo)小孔的形成就需要激光有更高的能量密度。由于能量密度閾值的高低本質(zhì)上受其合金成分的控制,因此可以通過控制工藝參數(shù),選擇確定激光功率保證合適的熱輸入量,來獲得穩(wěn)定的焊接過程。另外,能量密度閾值一定程度上還受到保護(hù)氣體種類的影響。例如,激光焊接鋁合金時(shí)使用N2氣時(shí)可較容易地誘導(dǎo)出小孔,而使用He氣則不能誘導(dǎo)出小孔。這是因?yàn)镹2和Al之間可發(fā)生放熱反應(yīng),生成的Al-N-O三元化合物提高了對激光吸收率。
3.氣孔問題
鋁合金種類不同,產(chǎn)生的氣孔類型也不同。一般認(rèn)為,鋁合金在焊接過程中產(chǎn)生以下幾類氣孔。
1)氫氣孔。鋁合金在有氫的環(huán)境中熔化后,其內(nèi)部的含氫量可達(dá)到0.69ml/100g以上。但凝固以后,其平衡狀態(tài)下的溶氫能力最多只有0.036ml/100g,兩者相差近20倍。因此,在由液態(tài)向固態(tài)轉(zhuǎn)變的過程中,液態(tài)鋁中多余的氫氣必定要析出。如果析出的氫不能順利上浮逸出,就會聚集成氣泡殘留在固態(tài)鋁合金成為氣孔。
2)保護(hù)氣體產(chǎn)生的氣孔。在高能激光焊接鋁合金的過程中,由于熔池底部小孔前沿金屬的強(qiáng)烈蒸發(fā),使保護(hù)氣體被卷入熔池形成氣泡,當(dāng)氣泡來不及逸出而殘留在固態(tài)鋁合金中即成為氣孔。
3)小孔塌陷產(chǎn)生的氣孔。在激光焊接過程中,當(dāng)表面張力大于蒸氣壓力時(shí),小孔將不能維持穩(wěn)定而塌陷,金屬來不及填充就形成了孔洞。對減少或避免鋁合金激光焊接中的氣孔缺陷也有很多實(shí)際措施,如調(diào)整激光功率波形,減少小孔不穩(wěn)定塌陷,改變光束焦點(diǎn)高度和傾斜照射,在焊接過程時(shí)施加電磁經(jīng)場作用以及在真空中進(jìn)行焊接等。近幾年來,又出現(xiàn)了采用填絲或預(yù)置合金粉未、復(fù)合熱源和雙焦點(diǎn)技鋁合金的激光焊接工藝難點(diǎn)分析術(shù)來減少氣孔產(chǎn)生的工藝,有不錯的效果。
4.裂紋問題
鋁合金屬于典型的共晶合金,在激光焊接快速凝固下更容易產(chǎn)生熱裂紋,焊縫金屬結(jié)晶時(shí)在柱狀晶邊界形成AL-Si或Mg-Si等低熔點(diǎn)共晶是導(dǎo)致裂紋產(chǎn)生的原因。為減少熱裂紋,可以采用填絲或預(yù)置合金粉未等方法進(jìn)行激光焊接。通過調(diào)整激光波形,控制熱輸入也可以減少結(jié)晶裂紋。
鋁合金激光焊接的發(fā)展前景
鋁合金激光焊接最為人引人關(guān)注的特點(diǎn)是其高效率,而要充分發(fā)揮這種高效率就是把它運(yùn)用到大厚度深熔焊接中。因此,研究和使用大功率激光器進(jìn)行大厚度深熔焊接將是未來發(fā)展的必然趨勢。大厚度深熔焊更加突出了小孔現(xiàn)象及對焊縫氣孔的影響,因此小孔形成機(jī)理及控制變得更加,它必將成為業(yè)界共同關(guān)心和研究的熱點(diǎn)問題。
改善激光焊接過程的穩(wěn)定性和焊縫成形、提高焊接質(zhì)量是人們追求的目標(biāo)。因此,激光-電弧復(fù)合工藝、填絲激光焊接、預(yù)置粉未激光焊接、雙焦點(diǎn)技術(shù)以及光束整形等新技術(shù)將會得到進(jìn)一步完善和發(fā)展。
【鋁合金的激光焊接工藝難點(diǎn)分析】相關(guān)文章:
汽車焊接橋殼成型工藝的分析對比05-02
焊接工藝報(bào)告11-28
不同焊接工藝的焊接煙塵污染特征04-26
航宇鋁合金結(jié)構(gòu)激光焊05-01
車身激光焊接夾具設(shè)計(jì)與入射角對焊接質(zhì)量影響的研究05-01
鈦合金薄板激光焊接頭的疲勞性能04-27
軸盤的焊接工藝措施04-27