- 相關推薦
《二次根式復習課》教學反思10篇
身為一名優(yōu)秀的人民教師,我們的任務之一就是課堂教學,寫教學反思能總結我們的教學經驗,那么寫教學反思需要注意哪些問題呢?以下是小編收集整理的《二次根式復習課》教學反思,希望能夠幫助到大家。
《二次根式復習課》教學反思1
在二次根式這一章的學習中,重點是是掌握二次根式的運算,教學的關鍵是理解二次根式的性質,這塊教學內容是在實數(shù)的基礎上,著重研究二次根式。在本章教學中,存在以下問題:
1、雖然對學生的基本情況較為了解,但在教學設計中,仍然存在著對學情分析不足,主要是過高估計學生的學習能力,一方面每節(jié)課設計的教學內容過多,經常一節(jié)課結束后還有不少內容沒有完成,另一方面對以前學過的知識的復習工作做的不夠,導致后續(xù)的新知識的學習遇到不少麻煩。如對二次根式的性質的應用時,考慮到以前已經學過,自以為學生不存在困難,就沒有重點分析,結果導致不少學生在二次根式的化簡過程中因此而出錯。
2、在教學過程中,我的教學理念還沒有及時更新,有時對新老教材的區(qū)別關注不夠,從而導致教學不到位。在二次根式的化簡中,老教材比較重視對具體數(shù)的化簡,對字母的要求不高,一般都確保二次根式有意義,而新教材特別要求引導學生注意二次根式中字母的取值范圍,要求培養(yǎng)學生嚴謹?shù)膶W習態(tài)度和推斷字母取值范圍的'能力。剛開始對這一要求理解不到位,沒有對學生提出明確要求,也沒有重視對典型錯誤的分析。
3、在促進學生探索求知和有效學習方面還存在明顯不足。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,經常為了完成教學任務而忽視這方面的引導。在本章中,其實有許多內容可以進行這方面的嘗試。如判斷二次根式中字母的取值范圍、選取有理化因式、選擇不同的運算途徑等都可以讓學生進行探究和歸納。在二次根式的運算中我就直接告訴學生:加減運算時利用合并同類項法則,乘除時利用公式,結果大部分學生并不接受。若能讓學生在探究的基礎上歸納出方法,學習的效果會提高很多,學習的能力也會不斷提高。
4、在學生的學習方面,也有值得反思的地方,九年級學生在老師指導下學習數(shù)學方面的積極性并不差,但自主學習方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強、作業(yè)只求完成率而不講質量、學習的競爭意識和自我要求明顯缺乏。這些都有待于在今后的教學中進行教育和引導。
《二次根式復習課》教學反思2
本章的教學目標是經歷二次根式的概念的發(fā)生過程,了解二次根式的概念,以及二次根式的性質和運算。在概念的教學上采用了問題導入法比較順利。但對概念有一點疑惑,形如根號a(a>=o)的式子,那根號前面的`系數(shù)要不是1呢,難道就不是二次根式了嗎?本章的難點在利用性質化簡。往往不顧條件就往下做,過后才會醒悟,這是一棘手的問題。對于同類二次根式的概念的教學必須強調兩點1要最簡2被開方數(shù)相同。尤其在應用時學生會忽略第一點。
運算方面對加減法主要還是要熟練化簡,對一些常用的數(shù)進行分解。其次同類要合并,問題不是很大。而在乘除法的運算上,方法用的不當會變的很麻煩。主要要學會細心觀察,是先乘除后化簡來的比較簡單。
《二次根式復習課》教學反思3
在二次根式這一章的學習中,重點是熟練掌握二次根式的運算,教學的關鍵是理解二次根式的性質,在本章教學中,存在以下問題:
1、課前沒很好確定學生的基礎知識情況
高估學生對學過知識的掌握,認為平方根這一章的知識掌握不錯,所以在二次根式結果是非負數(shù)以及二次根式的被開方數(shù)也是非負數(shù)。我把這兩個結論草草給出,這樣導致基礎差的學生根本不知道這兩個結論的來源。
2、課堂沒完全還給學生
預習時間不充分,大部分學生是回顧了本章的知識點,但還沒來得及思考,易錯點沒有來得及整理展示討論,老師就開始講課,總怕展示時間過多以至于本節(jié)任務完不成。課堂活動時間也不充分,并且學生在思考問題時給予提示過多,以至于學生順著老師的思路走,沒有了自己的思考體系。因為時間不足,所以老師只好代替學生走了一下過場,訂正答案,還有一部分學生還沒有做完。這樣就不能真正檢驗學生掌握情況,不能及時反饋,及時采取措施進行補救。
3、課后練習不能真正落實
學生不能很熟練地化簡二次根式,以致于二次根式的加減乘除不能順利進行。例如不會熟練化成最簡二次根式,導致學生對二次根式的加減感到很困難。在這里,應要求學生對100以內的二次根式化簡熟練掌握,為二次根式的`加減打下扎實的基礎。對二次根式的加減,大部分學生理解同類二次根式,并能夠合并同類二次根式,出現(xiàn)的問題在于二次根式的化簡,學困生在于整式的加減,整式的乘除,分式的加減和乘除的運算的公式和運算法則不清,即使把本節(jié)知識聽懂了,由于過去的知識不牢固,造成運算結果不正確。把過去學過的知識復習,使學生能夠獨立完成二次根式的運算。
《二次根式復習課》教學反思4
上完兩節(jié)課,反思如下:
1、本節(jié)課是九年級上冊第二十一章的內容,是一節(jié)新授課,在備課時按照目標讓學生明白、過程讓學生經歷、結論讓學生討論、規(guī)律讓學生總結的指導原則進行認真?zhèn)湔n繞潿岳題與練習題也進行了精心的挑選,按照由易到難由簡入繁的順序安排,并且認真制作了課件Ρ閿諮生對重點內容的理解和難點的解決。
2、讓學生回顧了算術平方根與平方根的概念,得出二次根式的定義后又復習了算術平方根具有雙重非負性通過練習讓。根據(jù)幾個例題的練習,學生可以得出二次根式的兩個性質,體會從特殊到一般的思維過程,進而掌握公式的一般推導方法。
3、本節(jié)課大部分時間都是引導學生邊學邊做,讓學生經歷了整個學習過程。在學習過程中ν懷雋艘導學生自己得出結論,特別是二次根式的兩個性質,在做完思考題之后,學生自己就初步得出了結論,而且通過其他學生的'補充越來越完善。讓學生自己找出性質2和性質3的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓練,培養(yǎng)了學生總結規(guī)律的能力。在引導學生探索求知和互動學習方面還有欠缺。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,對學生探索求知進行了引導,并且鼓勵大家自己得出結論,但在互動方面做的還不夠,大部分學生都是獨立思考,很少與同學合作交流,今后的教學中應多培養(yǎng)學生合作交流的意識,這樣有助于他們今后的生活和學習。
《二次根式復習課》教學反思5
教學背景:
本課是因教研室來校聽課指導的情況下設計的,由于課時緊,第二天要進行月考,故必須安排一節(jié)課進行《二次根式》的復習。設計學習卷一份,既要考慮堂上復習需要,又要考慮課后練習布置,故安排的題量較充足。同時配合使用PPT課件進行知識框架的復習,以及將學習卷內容在課件上演示,方便講評。
教學實施情況:
復習本章知識框架,做PPT課件上6道判斷題用時10分鐘。做課前小測及講評用時約8分鐘,做典型題組及講評用時約22分鐘(主要針對中下生)。所有練習均為學生先做后學(難題、易錯題老師講評)。多數(shù)同學能在堂上完成到題組訓練部分。
改進措施:
總的來說本課能完成既定的目標,但細節(jié)上個別題目的安排可能要作修改,如小測題第3小題“不改變根式的大小把根式外的因式移到根號內”難度跨度大,在此處可暫時不做此類題,改為做分母有理化的`題,如等化簡是學生的難點,要重點解決,保證基本題過關。這樣也使到在做問題2(2)小題時可順利一些。另外在復習知識框架時穿插問題1的練習,可避免概念復習的抽象化,也節(jié)約了時間。對問題1的第(3)題在重點班可去掉“最簡二次根式”的條件,要求會寫出求a值的過程,且不限一個解答。(本題的變式題在第二天的月考中就出現(xiàn)了)。另題組訓練中三個層次:最基本題組、基本題組、變式題組的難度相應為A組、B組、C組,可在卷上注明,或老師堂上說明,學生可按自己水平選做相應的題組,重點班要求全做。
《二次根式復習課》教學反思6
通過這節(jié)課的學習,學生將掌握二次根式加減法運算法則,并發(fā)現(xiàn)二次根式加減法的實質就是合并被開方數(shù)相同的二次根式,這正如整式加減法的實質就是合并同類項一樣,為了確認哪些被開方數(shù)完全相同,需要將二次根式化成最簡二次根式,這時一定要認真細心,避免出錯。
本節(jié)課是二次根式加減的第一節(jié)課,它是在二次根式的乘除的基礎上的進一步學習,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:
1、先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。
2、四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。
3、對法則的`教學與整式的加減比較學習。
在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和興趣。
《二次根式復習課》教學反思7
新的課程標準,倡導把課堂變?yōu)閷W生自主、合作、探究的場所,呼喚學生主體性的發(fā)展。于是課堂上,我轉變角色,變數(shù)學知識的傳授者為數(shù)學活動的組織者、指導者、參與者和研究者。教學活動中,我首先明確這節(jié)課的學習目標,然后學生在問題的基礎之上逐步地得出這節(jié)課的重點內容。這樣讓學生感覺坡度不大,掌握起來比較容易。從而充分利用公式來做題。
我在設計練習題時,一是遵循學生的學習規(guī)律,從易到難。二是從易錯點出發(fā)。并且我進行了分層練習,分為A、B、C三組。最后我附加了小測驗。測驗題緊扣本節(jié)課的知識內容,從易到難。數(shù)學來自于生活,我在最后加了一個實際題目。
從整堂課來看,效果比較好,學生從未知到已知,并且進行了消化。整堂課始終把學生擺在第一位,讓他們主動去學習。真正把課堂交給學生,讓他們變成學習的主體。層層的問題給學生提供自主探索的機會,讓學生的'學習過程成為一個再探索、再發(fā)現(xiàn)的過程。在這種學習活動中,學生的創(chuàng)新意識和主動探求知識的興趣得到了培養(yǎng),同時使所有學生都能在數(shù)學學習中獲得發(fā)現(xiàn)的樂趣、成功的愉悅,樹立了自信心,增強了克服困難的勇氣和毅力。
《二次根式復習課》教學反思8
在二次根式這一章的學習中,重點是是掌握二次根式的運算,教學的關鍵是理解二次根式的性質,教學內容是著重研究二次根式。在本章教學中,存在以下問題:
1、在教學過程中仍然存在過高估計學生的學習能力,每節(jié)課設計的教學內容過多,經常一節(jié)課結束后還有不少內容沒有完成,如對二次根式的性質的應用時,考慮到以前已經學過,自以為學生不存在困難,就沒有重點分析,結果導致不少學生在二次根式的化簡過程中因此而出錯。
2、在二次根式的`化簡中,新教材特別要求引導學生注意二次根式中字母的取值范圍,要求培養(yǎng)學生嚴謹?shù)膶W習態(tài)度和推斷字母取值范圍的能力。剛開始對這一要求理解不到位,沒有對學生提出明確要求,也沒有重視對典型錯誤的分析。
3、在學生的學習方面,也有值得反思的地方我班的學生在老師指導下學習數(shù)學方面的積極性并不差,但自主學習方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強、作業(yè)只求完成率而不講質量、學習的競爭意識和自我要求明顯缺乏。這些都有待于在今后的教學中進行教育和引導。
基于上面的諸多因素,我班學生在學習還不夠理想,在本章單元測驗中,體現(xiàn)高分比以往減少,不及格人數(shù)明顯增加,平均分大幅降低。因此在今后的教學工作中要加強改進,提高教學實效。
《二次根式復習課》教學反思9
二次根式是代數(shù)式的一部分,其運算是有關運算中不可或缺的環(huán)節(jié),是后續(xù)教學中的基礎之一。因此,學好本章內容具有重要意義。而在教學中發(fā)現(xiàn),有很多學生(甚至教師)對這一部分內容相當含糊,特別是積的算術平方根、商的算術平方根公式以及二次根式的乘除法公式的有機應用,更造成了理解上的混亂,運算上的失誤。要解決這個問題,就必須明確二次根式的化簡、運算目的`。通過教學反思,我認為二次根式的教與學必須圍繞“小”、“少”、“分母無根號”三步訣。
所謂“小”,是指被開方數(shù)化簡到最簡(即化簡成不能再開平方的整數(shù))為止。為此,可以用二次根式的四個性質來實現(xiàn)這個目的:①2=a;②=|a|;③=;④=。
所謂“少”,是指結果中盡量少含根號。要達到這個要求,可以用二次根式的乘法、除法公式來解決:;。在教材中P7例1計算、P9例4等。
所謂“分母無根號”,是指分母中不含有根號。眾所周知,開不盡方的數(shù)是無理數(shù),要除以一個無限不循環(huán)的小數(shù),是很困難的,所以要轉化為有理數(shù)來解決。一般情況下,利用分式的基本性質,分子、分母同時乘以分母的有理化因式即可。
《二次根式復習課》教學反思10
學生對二次根式的化簡掌握不好,比如被開方數(shù)32不能一次分解為16乘2,而是分解為4乘8,不能分解盡。比如108,98等數(shù)的分解還不能完全掌握。當被開方數(shù)是分數(shù)時,學生掌握的更不好,比如當被開方數(shù)的分母是8,27時學生很多都是乘8,27,計算量很大,還易錯。實際上乘2,3即可。
在合并同類二次根式時,合并系數(shù)時出錯較多。尤其是當系數(shù)是分數(shù)時出錯最多。這充分暴露了學生對于分數(shù)和同類項的知識掌握不好。講解時對于合并這一步驟要多講、細致講。
在教學中,要多講、多練、多測,促進學生對運算法則的熟練掌握。對學生出錯較多的類型有針對性的再測。注重對學生的落實,掌握學生的小測情況,不過關的.抽時間讓學生補錯。
二次根式的化簡是考試的必考內容,現(xiàn)在全班小測之后只有三分之一的學生全對,正常的情況是三分之二的學生全對。如果有時間,可以出一份20道左右的二次根式的專題考試,考過之后,對于出錯多的題型進行二次考試。二次考試之后還出錯的學生逐一落實補錯。
二次根式的教學雖然課時已經結束,但是就學習效果來看卻還任重道遠。掌握學情,不斷摸索,不斷成長。
【《二次根式復習課》教學反思】相關文章:
關注二次根式新題型12-10
歷史復習課教學反思(精選14篇)06-28
《俄羅斯》復習課同課異構教學反思04-26
八年級數(shù)學《二次根式》教學反思(通用11篇)10-26
《二次函數(shù)》復習課教案12-17
物質鑒別的復習課(化學教學反思)12-10