午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

八年級數(shù)學(xué)教案

時間:2024-11-12 13:41:43 數(shù)學(xué)教案 我要投稿

精選八年級數(shù)學(xué)教案五篇

  作為一位杰出的教職工,時常需要編寫教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。寫教案需要注意哪些格式呢?下面是小編整理的八年級數(shù)學(xué)教案5篇,希望能夠幫助到大家。

精選八年級數(shù)學(xué)教案五篇

八年級數(shù)學(xué)教案 篇1

  一、創(chuàng)設(shè)情境

  在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.

  問題1如圖是某地一天內(nèi)的氣溫變化圖.

  看圖回答:

  (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

  解(1)這天的6時、10時和14時的`氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

  二、探究歸納

  問題2銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長,相應(yīng)的年利率y是如何變化的.

  解隨著存期x的增長,相應(yīng)的年利率y也隨著增長.

  問題3收音機(jī)刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對應(yīng)的數(shù)值:

  觀察上表回答:

  (1)波長l和頻率f數(shù)值之間有什么關(guān)系?

  (2)波長l越大,頻率f就________.

  解(1)l與f的乘積是一個定值,即

  lf=300000,

  或者說.

  (2)波長l越大,頻率f就 越小 .

  問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

  利用這個關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關(guān).一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級數(shù)學(xué)教案 篇2

  教學(xué)建議

  1、平行線等分線段定理

  定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

  注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

  定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

  2、平行線等分線段定理的推論

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

  記憶方法:“中點”+“平行”得“中點”。

  推論的用途:(1)平分已知線段;(2)證明線段的倍分。

  重難點分析

  本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

  本節(jié)的難點也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

  教法建議

  平行線等分線段定理的引入

  生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

 、購纳顚嵗耄缈潭瘸、作業(yè)本、柵欄、等等;

  ②可用問題式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。

  教學(xué)設(shè)計示例

  一、教學(xué)目標(biāo)

  1、使學(xué)生掌握平行線等分線段定理及推論。

  2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。

  3、通過定理的變式圖形,進(jìn)一步提高學(xué)生分析問題和解決問題的.能力。

  4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美

  二、教法設(shè)計

  學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

  三、重點、難點

  1、教學(xué)重點:平行線等分線段定理

  2、教學(xué)難點:平行線等分線段定理

  四、課時安排

  l課時

  五、教具學(xué)具

  計算機(jī)、投影儀、膠片、常用畫圖工具

  六、師生互動活動設(shè)計

  教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

  七、教學(xué)步驟

  【復(fù)習(xí)提問】

  1、什么叫平行線?平行線有什么性質(zhì)。

  2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

  【引入新課】

  由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

 。ㄒ龑(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)

  平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

  注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學(xué)生明確。

  下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。

  已知:如圖,直線 , 。

  求證: 。

  分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

 。ㄒ龑(dǎo)學(xué)生找出另一種證法)

  分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

  證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認(rèn)識幾種定理的變式圖形,如圖(用計算機(jī)動態(tài)演示)。

  引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。

  注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

  接下來講如何利用平行線等分線段定理來任意等分一條線段。

  例 已知:如圖,線段 。

  求作:線段 的五等分點。

  作法:①作射線 。

  ②在射線 上以任意長順次截取 。

  ③連結(jié) 。

  ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

  、 、 、 就是所求的五等分點。

 。ㄕf明略,由學(xué)生口述即可)

  【總結(jié)、擴(kuò)展】

  小結(jié):

 。╨)平行線等分線段定理及推論。

  (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

 。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

 。4)應(yīng)用定理任意等分一條線段。

  八、布置作業(yè)

  教材P188中A組2、9

  九、板書設(shè)計

  十、隨堂練習(xí)

  教材P182中1、2

八年級數(shù)學(xué)教案 篇3

  一、 教學(xué)目標(biāo)

  1.了解分式、有理式的概念.

  2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

  二、重點、難點

  1.重點:理解分式有意義的條件.

  2.難點:能熟練地求出分式有意義的條件.

  三、課堂引入

  1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.

  2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時間,與以最大航速逆流航行60 所用時間相等,江水的流速為多少?

  請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.

  設(shè)江水的流速為v /h.

  輪船順流航行90 所用的時間為小時,逆流航行60 所用時間小時,所以=.

  3. 以上的`式子,,,,有什么共同點?它們與分?jǐn)?shù)有什么相同點和不同點?

  四、例題講解

  P128例1. 當(dāng)下列分式中的字母為何值時,分式有意義.

  [分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解

  出字母的取值范圍.

  [補(bǔ)充提問]如果題目為:當(dāng)字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.

  (補(bǔ)充)例2. 當(dāng)為何值時,分式的值為0?

 。1) (2) (3)

  [分析] 分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 當(dāng)x取何值時,下列分式有意義?

 。1) (2) (3)

  3. 當(dāng)x為何值時,分式的值為0?

  (1) (2) (3)

  六、課后練習(xí)

  1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

 。1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.

  (2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.

 。3)x與的差于4的商是 .

  2.當(dāng)x取何值時,分式 無意義?

  3. 當(dāng)x為何值時,分式 的值為0?

八年級數(shù)學(xué)教案 篇4

  一、學(xué)生起點分析

  通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學(xué)任務(wù)分析

  《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學(xué)生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).

  本節(jié)課的教學(xué)目標(biāo)是:

  ①通過拼圖活動,讓學(xué)生感受客觀世界中無理數(shù)的存在;

 、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);

 、蹖W(xué)生親自動手做拼圖活動,培養(yǎng)學(xué)生的`動手能力和探索精神;

 、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;

  三、教學(xué)過程設(shè)計

  本節(jié)課設(shè)計了6個教學(xué)環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質(zhì)疑

  內(nèi)容:【想一想】

 、乓粋整數(shù)的平方一定是整數(shù)嗎?

 、埔粋分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?

  目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

  效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內(nèi)容:1.【算一算】

  已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎?

  2.【剪剪拼拼】

  把邊長為1的兩個小正方形通過剪、拼,設(shè)法拼成一個大正方形,你會嗎?

  目的:選取客觀存在的“無理數(shù)“實例,讓學(xué)生深刻感受“數(shù)不夠用了”.

  效果:巧設(shè)問題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分?jǐn)?shù)?

  【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)

  【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段

  目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣

  效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.

  第四環(huán)節(jié):應(yīng)用與鞏固

  內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

  【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:

  1.長度是有理數(shù)的線段

  2.長度不是有理數(shù)的線段

  【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)

  2.三邊長都是有理數(shù)

  2.只有兩邊長是有理數(shù)

  3.只有一邊長是有理數(shù)

  4.三邊長都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

  它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

  目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對“新知”的理解,鞏固了本課所學(xué)知識.

  第五環(huán)節(jié):課堂小結(jié)

  內(nèi)容:

  1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?

  3.除了本課所認(rèn)識的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點及數(shù)學(xué)方法,使知識系統(tǒng)化.

  效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會進(jìn)行概括總結(jié).

  第六環(huán)節(jié):布置作業(yè)

  習(xí)題2.1

  六、教學(xué)設(shè)計反思

 。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動力

  大量事實都證明一點,與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.

 。ǘ┗橄鬄榫唧w

  常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.

  (三)強(qiáng)化知識間聯(lián)系,注意糾錯

  既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點:“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.

八年級數(shù)學(xué)教案 篇5

  課時目標(biāo)

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意義、分式的值是否等于零的識別方法。

  教學(xué)重點

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的`條件。

  教學(xué)難點:

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

  教學(xué)時間:一課時。

  教學(xué)用具:投影儀等。

  教學(xué)過程:

  一.復(fù)習(xí)提問

  1.什么是整式?什么是單項式?什么是多項式?

  2.判斷下列各式中,哪些是整式?哪些不是整式?

  ①+m2 ②1+x+y2- ③ ④

 、 ⑥ ⑦

  二.新課講解:

  設(shè)問:不是整工式子中,和整式有什么區(qū)別?

  小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

  練習(xí):下列各式中,哪些是分式哪些不是?

  (1)、、(2)、(3)、(4)、(5)x2、(6)+4

  強(qiáng)調(diào):(6)+4帶有是無理式,不是整式,故不是分式。

  2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

  練習(xí):課后練習(xí)P6練習(xí)1、2題

  設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)

  例題講解:課本P5例題1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

  (板書解題過程。)

  3.小結(jié):分式是否有意義的識別方法:當(dāng)分式的分母為零時,分式無意義;當(dāng)分式的分母不等于零時,分式有意義。

  增加例題:當(dāng)x取什么值時,分式有意義?

  解:由分母x2-4=0,得x=±2。

  ∴ 當(dāng)x≠±2時,分式有意義。

  設(shè)問:什么時候分式的值為零呢?

  例:

  解:當(dāng) ① 分式的值為零

【八年級數(shù)學(xué)教案】相關(guān)文章:

有關(guān)八年級數(shù)學(xué)教案八年級數(shù)學(xué)教案全套10-03

八年級數(shù)學(xué)教案09-01

八年級數(shù)學(xué)教案03-05

八年級數(shù)學(xué)教案【熱門】01-18

【薦】八年級數(shù)學(xué)教案01-17

八年級上冊數(shù)學(xué)教案01-13

八年級數(shù)學(xué)教案[薦]06-22

八年級數(shù)學(xué)教案(推薦)06-21

八年級數(shù)學(xué)教案(優(yōu)選)06-04

【熱】八年級數(shù)學(xué)教案01-18