- 相關(guān)推薦
初中數(shù)學(xué)合并同類項教案
作為一名教師,編寫教案是必不可少的,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的初中數(shù)學(xué)合并同類項教案,歡迎閱讀與收藏。
初中數(shù)學(xué)合并同類項教案1
[教學(xué)目標(biāo)]
知識目標(biāo):使學(xué)生了解同類項的概念,能識別同類項,學(xué)會合并同類項并知道合并同類項所依據(jù)的運算律。
能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、歸納和動手解決問題的能力,初步使學(xué)生了解數(shù)學(xué)的分類思想。
情感目標(biāo):借助情感因素,營造親切和諧活潑的課堂氣氛,激勵全體學(xué)生積極參與教學(xué)活動。培養(yǎng)他們團(tuán)結(jié)協(xié)作,嚴(yán)謹(jǐn)求實的學(xué)習(xí)作風(fēng)和鍥而不舍,勇于創(chuàng)新的精神。
[教學(xué)重點]
同類項的概念和合并同類項的法則及求代數(shù)式的值。[教學(xué)難點]學(xué)會合并同類項.
[教學(xué)方法]
引導(dǎo)、啟發(fā)、探求
[教學(xué)過程]
一、復(fù)習(xí)回顧
1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。幾個常數(shù)也是同類項。
2.同類項有兩個特征
(1)所含字母相同;
。2)相同字母的指數(shù)分別相同;(兩者缺一不可)
3.同類項與他們的系數(shù)大小無關(guān);
4.同類項與它們所含相同字母的順序無關(guān);
5、判斷下列說法是否正確。
(1)3x與3mx是同類項。
(2)2ab與-5ab是同類項。
(3)3x2與1?3yx2是同類項。
(4)5ab2與2ab2c是同類項。
(5)23與32是同類項。
二、創(chuàng)設(shè)情境,引入課題
問題:為了搞好班會活動,班長和生活委員去購買一些水筆和軟抄本作為獎品,他們首先購買了15本軟抄本和20支水筆,經(jīng)過預(yù)算,發(fā)現(xiàn)這么多獎品不夠用,然后他們又去購買了6本軟抄本和5支水筆。問:
。、他們兩次共買了多少本軟抄本和多少支水筆?
答案:21本軟抄本,25支水筆2、如果軟抄本的單價為每本x元,水筆的單價為每支y元,則這次活動他們支出的總金額是多少元?答案:15x+20y+6x+5y=21x+5y提問合并同類項概念:把多項式中的同類項合并成一項。
設(shè)計意圖:用此方式,充分調(diào)動了學(xué)生積極參與,激發(fā)了學(xué)生求知欲望創(chuàng)設(shè)問題情境,選擇新舊知識的切入點,通過啟發(fā)提問,構(gòu)造問題懸念,激發(fā)學(xué)生興趣,并自然引出課題.
三、實踐思考探索交流
例
1、找出多項式3x2y-4xy2-3+5x2y+2xy2+5中的同類項,并合并同類項。
問題1:同類項有哪些?同類項怎么合并?
、伲3+5=________;② 3x2y+5x2y=__________=______
其理由是____________;③-4xy2 +2xy2=____________=_______
其理由是____________.問題2:在一個多項式中,不在一起的同類項能否將同類項結(jié)合在一起?為什么?
答:可以,理由是運用加法交換律與結(jié)合律將同類項結(jié)合在一起,原多項式不變。
解:3x2y-4xy2-3+5x2y+2xy2+5
=3x2y+5x2y-4xy2+2xy2+5-3
加法交換律
=(3x2y+5x2y)+(-4xy2+2xy2)+(5-3)
統(tǒng)一加法的形式
=(3+5)x2y+(-4+2)xy2
+(5-3)
乘法分配律的逆運算
=8x2y-2xy2+2
合并問題4:根據(jù)上面合并同類項的例子,你能歸納合并同類項的法則嗎?
合并同類項法則:把同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變.注意:(1)、合并的前提是有同類項.(2)、合并指的是系數(shù)相加,”相加”指的是代數(shù)和.(3)、合并同類項的根據(jù)是加法交換律、結(jié)合律以及乘法分配律。
設(shè)計意圖:利用問題形式提示學(xué)生上面是利用了乘法的分配律逆運算(學(xué)生分組討論.)例
2、合并下列多項式中的同類項。(1)a3-a2b+ab2+a2b-ab2+b3(2)6a2-5b2+2ab+5b2-6a2學(xué)生思考:合并同類項的步驟是怎樣?
1、準(zhǔn)確地找出同類項。
2、利用合并同類項的法則合并同類項。3寫出合并后的結(jié)果。
解:
。1)、a3-a2b+ab2+a2b-ab2+b3
找出同類項
=a3+(-a2b+a2b)+(ab2-ab2)+b3把同類項結(jié)合
=a3+(-1+1)a2b +(1-1)ab2+b3
把同類項合并
=a3+b3
若該項沒有同類項怎么辦?照抄下來
。2)6a2-5b2+2ab+5b2-6a2
=6a2-6a2-5b2+5b2 +2ab
=(6a2-6a2)+(-5b2+5b2)+2ab
=2ab
方法是:
。1)系數(shù):各項系數(shù)相加作為新的系數(shù)。
。2)字母以及字母的指數(shù)不變。
強調(diào)學(xué)生注意:
。1)、用畫線的方法標(biāo)出各多項式中的同類項,以減少運算的錯誤。
。2)、移項時要帶著原來的符號一起移動。
。3)、兩個同類項的系數(shù)互為相反數(shù)時,合并同類項,結(jié)果為零。
。4)、①、合并同類項時,只能把同類項合并為一項,不是同類項的不能合并,不能合并的項,在每一步運算中都要寫上;②、同類項移動位置時,不要漏掉它的性質(zhì)符號,特別注意“-”。
例
3、求多項式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。
方法1解:當(dāng)x=-3時
原式=3×(-3)2+4×(-3)-2×(-3)2-(-3)+(-3)2-3×(-3)-1
=3×9-12-2×9+3+9+9-1
=27-12-18+3+9+9-1 =17
方法2解:3x2+4x-2x2-x+x2-3x-1
=3x2-2x2+x2+4x-x-3x-1
=(3-2+1)x2+(4-1-3)x-1
=2x2-1
當(dāng)時x=-3時,原式=2×(-3)2-1 =17
提問學(xué)生:通過求值你發(fā)現(xiàn)了什么?怎樣更簡捷的求值呢?
答:求多項式的值,常常先合并同類項,再求值,這樣比較方便。
設(shè)計意圖:使學(xué)生知道在此題形中先化簡,再求值比較方便,幫助學(xué)生提高解題速度。
四、概括提升(課堂練習(xí))。
1、如果兩個同類項的系統(tǒng)互為相反數(shù),那么合并同類項后,結(jié)果.比如-5a2b+5a2b=.2、先標(biāo)出下列各多項式的同類項,再合并同類項。
(1)、3x-2x2+5+3x2-2x-5
(2)、a3+a2b+ab2-a2b-ab2-b3解答:略
設(shè)計意圖:幫助學(xué)生鞏固本節(jié)課所學(xué)的'內(nèi)容,同時也可提高學(xué)生計算能力。
五、本節(jié)你學(xué)到了什么?
合并同類項:我們把多項式中的同類項合并成一項。
合并同類項法則:
。1)把同類項的系數(shù)相加,所得的結(jié)果作為系數(shù);
。2)字母和字母的指數(shù)保持不變.
。3)求代數(shù)式的值時,先化解,再代入比較簡便。
設(shè)計意圖:幫助學(xué)生總結(jié)和鞏固本節(jié)課所學(xué)的內(nèi)容。
六、作業(yè):P66第1題和第2題。
設(shè)計意圖:幫助學(xué)生鞏固本節(jié)課所學(xué)的內(nèi)容
教學(xué)反思
通過練習(xí),使學(xué)生熟悉并掌握同類項概念和合并同類項法則。整個教學(xué)過程來說,學(xué)生反映較好,但是課下我自己的反思,發(fā)現(xiàn)自己有很多地方需要注意和改進(jìn)。
1、板書設(shè)計很重要,這能體現(xiàn)教師的講課內(nèi)容的重點,難點。而我的板書在這方面需要改進(jìn)。
2、提出的問題還沒有到位。在教學(xué)過程總,曾出現(xiàn)學(xué)生不知老師所提出問題的意圖,我的語言表達(dá)不是很準(zhǔn)確,不是很到位,這是我今后在教學(xué)方面應(yīng)該加強注意和練習(xí)。
3、同類項的概念要讓學(xué)生著重理解到會靈活運用。
4、探究過程是一個十分重要的過程。這時老師應(yīng)該特別注意學(xué)生的反應(yīng)。
5、不僅內(nèi)容要傳授準(zhǔn)確,而且要強調(diào)學(xué)生做題的規(guī)范性,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
6、在學(xué)生學(xué)習(xí)活動環(huán)節(jié),老師應(yīng)關(guān)注學(xué)生探究化簡方法是否能積極思考,主動參與;是否能說出化簡方法的理論依據(jù),學(xué)生對同類項定義的理解和掌握情況對合并同類項法則的總結(jié)情況。
7、結(jié)合學(xué)校特點,發(fā)揮優(yōu)勢,數(shù)學(xué)科課堂教學(xué)模式還要更加深入地探索、研究,逐步形成自我教學(xué)特色。
8、在授課前要想辦法,用生動有趣的圖案和實物來代替抽象的理論知識,來調(diào)動學(xué)生的學(xué)習(xí)積極性,用精彩的問題設(shè)置吸引學(xué)生,用數(shù)學(xué)實驗和游戲吸引學(xué)生,用生動有趣的語言、事例吸引學(xué)生。
另外,我對本節(jié)課的重點內(nèi)容的把握不是很好。對學(xué)生的接受新知識的能力有所高估。在今后的教學(xué)中,應(yīng)需要鉆研教材,了解學(xué)生的基本情況。新知識的接受需要一個過程,突出學(xué)生主體地位,讓學(xué)生在課堂上的思考、討論、總結(jié)這也需要一個過程,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。
總之,應(yīng)用教材,如何引導(dǎo)學(xué)生去學(xué)成為關(guān)鍵。這就要求我們的課堂教學(xué)模式有所改進(jìn),充分考慮學(xué)生的好奇心和榮譽感,鼓勵學(xué)生多討論多參與,讓學(xué)生有機會講述自己的見解,我們要有“度”的進(jìn)行課堂管理。不僅要注重培養(yǎng)學(xué)生的學(xué)習(xí)興趣,更要尊重學(xué)生的學(xué)習(xí)興趣,不能扼殺學(xué)生的學(xué)習(xí)熱情,讓學(xué)生在打好學(xué)習(xí)基礎(chǔ)的同時,又培養(yǎng)了自身的能力,發(fā)展了自身的特長。
初中數(shù)學(xué)合并同類項教案2
學(xué)習(xí)方式:
從具體問題情景中探索體會合并同類項的含義。
逆用乘法分配律探求合并同類項法則。
通過多角度的練習(xí)辨別同類項,加 深對概念的理解,培養(yǎng)思維的嚴(yán)密性。
教學(xué)目標(biāo):
1、在具體情境中理解、掌握同類項的定義;
2、在具體情境中, 讓學(xué)生了解合并同類項的法則,能進(jìn)行同類項的合并。
3、能運用合并同類項化簡多項式,并根據(jù)所給字母的值,求多項式的值。
4、通過“合并同類項”的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生的運算能力。
教學(xué)的重點、難點和疑點
1、重點:同類項的概念,合并同類項的法則。
2、難點:理解同類項的概念中所含字母相同,且相同字母的次數(shù)也相同的含義。
3、疑點:同類項與同次項的區(qū)別。
教具準(zhǔn)備
投影儀(電腦)、自制膠片
教學(xué)過程:
提出問題
創(chuàng)設(shè)情景 (出示投影)
如圖的長方形由兩個小長方形組成,求這個長方形的面積。
①當(dāng)學(xué)生列出代數(shù)式 8n+5n時,可引導(dǎo)學(xué)生是否還有其他表示方法,啟發(fā)學(xué)生得出:
。8+5)n
、诮又龑(dǎo)學(xué)生寫出等式:
8n+5n=(8+5)n=13n
啟發(fā)學(xué)生觀察上式是怎樣的一種變化;
它類似于我們前面學(xué)過的什么運算律
為什么8n與5n可以合并成一項(組織學(xué)生充分
討論,從而引出同類項的概念)
、弁愴椀母拍
舉出一些具有代表性的同類項的'實際例子。
如:-7a2b , 2a2b ;
8n , 5n ;
3x2, -x2
引導(dǎo)學(xué)生觀察上面給出的幾組代數(shù)式具有什么共同特點:
、偎淖帜赶嗤
、谙嗤帜傅闹笖(shù)也相同
教師順勢提出同類項的概念
強調(diào)同類項必須滿足以上兩條
④結(jié)合長方形面積問題,引出合并同類項的概念:把同類項合并成一項就叫做合并同類項。 學(xué)生觀察,思考
討論交流
(反例鞏固) 出示問題;
x與y,
a2b與ab2,
-3pa與3pa
abc與ac,
a2和a3 是不是同類項
。ńo學(xué)生留下足夠的思考時間,引導(dǎo)學(xué)生緊緊結(jié)合同類項的兩個條件進(jìn)行判斷)
其中:a2b與ab2可讓學(xué)生充分討論交流。
。ń處煆娬{(diào)“必須是相同字母的指數(shù)相同”這句話的含義,從而分清同類項與同次項的區(qū)別)
(引導(dǎo)學(xué)生題后反思,同類項與它們的系數(shù)無關(guān),只與所含的字母及字母的指數(shù)有關(guān))。
緊扣定義
加以判別
例1 根據(jù)乘法分配律合并同類項
。1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3
(教師強調(diào)乘法分配律的逆運用)
。▽W(xué)生板書完畢后,教師引導(dǎo)學(xué)生觀察合并的前后發(fā)生了什么變化?其中系 數(shù)怎樣變化的?字母及字母的指數(shù)又怎樣變化了)
由此引導(dǎo)學(xué)生總結(jié)出合并同類項的法則:
在合并同類項時,只把同類項的系數(shù)相加減,字母和字母的指數(shù)不變。
學(xué)生思考
解答(找二生板演其他學(xué)生獨立寫出過程)
總結(jié)法則
可根據(jù)情況適當(dāng)復(fù)習(xí)關(guān)于乘法分配律的有關(guān)知識
通過上面的實例,學(xué)生對怎樣合并同類項的問題已有較深刻的印象,但還不能用完整的數(shù)學(xué)語言將其敘述出來,教師要積極引導(dǎo),讓學(xué)生動腦思考。
應(yīng)用法則
例2,合 并同類項
、3a+2b-5a-b
、冢4ab+8-2b2-9ab-8
給學(xué)生留有足夠的獨立的思考時間
找二生到黑板上板演。
學(xué)生 板演后,教師組織 學(xué)生交流評價,根據(jù)出現(xiàn)的問題,作點拔,強調(diào)。
強調(diào):合并同類項的過程實質(zhì)上就是同類項的系數(shù)相加減的過程,在系數(shù)相加時,不要遺漏符號,字母和字母的指數(shù)都不變。
教師不給任何提示
學(xué)生在練習(xí)本上完成,然后同桌同學(xué)互相交換評判。
(二生到黑板上板演)
變式
應(yīng)用 補充例題
例3,求代數(shù)式的值
①2x2-5x+x2+4x-3 x2-2 其中x=
、冢3 x2+5x-0.5 x2+x-1 其中x=2
出示 例題后,教師不要給任何提示,先讓學(xué)生獨立思考。
部分學(xué)生會直接把x= 代入式中去計算,出現(xiàn)這一情況后,教師可積極引導(dǎo)。
問:還有沒有其 他方法?學(xué)生仔細(xì)觀察后不難發(fā)現(xiàn)先合并化簡后,再代入求值,此時教師可提出讓學(xué)生對比分析哪種方法簡便。從而強調(diào),先化簡再求值會使運算變得簡便。
獨立完成
分析比較
尋求簡便方法
隨堂
練習(xí) 1、合并同類項
、3y+ y=__________
、3b-3a2+1+a3-2b=____ _______
③2y+6y+2xy-5=_____________
2、求代數(shù)式的值
8 p2-7q+6q-7p2-7
其中p=3 q=3
練習(xí)交流合作
教師可根據(jù)情況適當(dāng)補充
小結(jié) 今天你學(xué)會了哪些知識?獲得了哪些方法,
有什么體會? 自己總結(jié)
作業(yè) 教材課后習(xí)題
初中數(shù)學(xué)合并同類項教案3
教材分析:
本節(jié)課是在學(xué)習(xí)了單項式、多項式之后,以同類項的概念、合并同類項的法則及其運用為教學(xué)內(nèi)容。合并同類項是本章的一個重點,其法則的應(yīng)用是整式加減的基礎(chǔ),也是以后學(xué)習(xí)解方程、解不等式的基礎(chǔ)。另一方面,這節(jié)課與前面所學(xué)的知識有著千絲萬縷的聯(lián)系:合并同類項的法則是建立在數(shù)的運算的基礎(chǔ)之上;在合并同類項過程中,要不斷運用數(shù)的運算?梢哉f合并同類項是有理數(shù)加減運算的延伸與拓廣。因此,這是一節(jié)承上啟下的課。同時也是滲透數(shù)學(xué)思想分類思想的一節(jié)課。
教學(xué)目標(biāo):
知識與技能:在具體情境中了解同類項及合并同類項法則。
過程與方法:
1、經(jīng)歷合并同類項法則的概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力和概括能力;
2、通過分組合作學(xué)習(xí)活動,學(xué)會在活動中與他人合作,并能與他人交流思維的過程和結(jié)果。
情感態(tài)度與價值觀:
1、通過合并同類項法則的概括與合作學(xué)習(xí)的過程,培養(yǎng)學(xué)生從特殊到一般的思維認(rèn)知規(guī)律
2、通過具體情境的探索、交流等數(shù)學(xué)活動培養(yǎng)學(xué)生的團(tuán)體合作精神和積極參與、勤于思考意識。
教學(xué)重難點:
重點:同類項的概念、合并同類項的法則及應(yīng)用。難點:正確判斷同類項;準(zhǔn)確合并同類項。
教學(xué)過程:
。ㄒ唬﹦(chuàng)設(shè)情境,激發(fā)興趣
多媒體展示蘋果、橘子。問學(xué)生怎樣分類?
師指出:不僅生活中處處有分類的問題,在數(shù)學(xué)中也有分類的問題。進(jìn)入數(shù)學(xué)問題的探究
。ㄔO(shè)計目的:寓教于樂,使數(shù)學(xué)與生活融為一體,有益于學(xué)生理解數(shù)學(xué)、熱愛數(shù)學(xué),充分調(diào)動學(xué)習(xí)的積極性,為本課學(xué)習(xí)做好準(zhǔn)備。)
(二)觀察探究,分組討論
多媒體展示:5a與9a、-5m2n與6m2n、-y x2與8x2y、0與思考:上述代數(shù)式歸為四類需要有什么共同的特征?請學(xué)生交流討論后歸納
得出同類項的概念:所含字母相同,并且相同字母的指數(shù)也相同的項稱為同類項。
所有的常數(shù)項也叫同類項。
。ㄔO(shè)計目的:教師充分發(fā)揮學(xué)生的主體作用,讓學(xué)生從自己的視點去觀察、歸納,讓學(xué)生親自體驗知識獲得的過程,享受成功的喜悅。)
。ㄈ┥钊胨伎,強化概念
思考:
1、同類項的判斷依據(jù)是什么?有哪幾個方面?
2、同類項與系數(shù)有關(guān)嗎?
3、同類項與它們所含字母的.順序有關(guān)嗎?強化:課件展示課本練習(xí)1(設(shè)計目的:趁熱打鐵的簡單練習(xí),有利于鞏固知識,使學(xué)生牢固掌握同類項的知識,增強應(yīng)用意識。)
(四)再創(chuàng)情境,引出法則
1.回顧引入問題:兩個蘋果加三個蘋果等于幾個蘋果?一個橘子加兩個橘子等于幾個橘子?
2.合并同類項:把多項式中的同類項合并成一項就叫做合并同類項.3.合并同類項的法則:
同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
。ㄔO(shè)計目的:以生活實例為切入點,通過對簡單的、熟悉的數(shù)量運算,激發(fā)學(xué)生學(xué)習(xí)合并同類項及其法則的欲望,從而較自然的引入新課題。)4.快速鞏固:課本練習(xí)2
(五)例題分析,合作交流
例1:合并下列多項式中的同類項:? 4x2?2x?1?3x2?3x?2 ? 4a2?3b2?2ab?3a2?b2
111例2:求多項式3a?abc?c2?3a?c2的值,其中a??,b?2,c??3
336(設(shè)計目的:教師示范解題格式,規(guī)范操作,學(xué)生再加以運用,注重培養(yǎng)學(xué)生規(guī)范解題的能力。)
。┚毩(xí)鞏固,強化目標(biāo)
(七)小結(jié)與評價
通過本節(jié)課的學(xué)習(xí)你有哪些收獲?
同類項:
(1)所含字母相同;
。2)相同字母的指數(shù)也相同
合并同類項法則:
(1)系數(shù)相加作為結(jié)果的系數(shù)。
。2)字母與字母的指數(shù)不變。
(八)作業(yè)布置:
課本P76
習(xí)題第1、2題
【初中數(shù)學(xué)合并同類項教案】相關(guān)文章:
《合并同類項》教案12-17
《合并同類項》教案優(yōu)秀09-15
北京課改版初一數(shù)學(xué)單元練習(xí)題:合并同類項12-31
初中數(shù)學(xué) 教案02-24
數(shù)學(xué)初中教案11-06
初中數(shù)學(xué)命題教案02-23
初中數(shù)學(xué)圓教案04-17
初中數(shù)學(xué)矩形教案12-30