初中數(shù)學設計教案
作為一名辛苦耕耘的教育工作者,可能需要進行教案編寫工作,教案是教學活動的總的組織綱領和行動方案。那么你有了解過教案嗎?以下是小編為大家整理的初中數(shù)學設計教案,僅供參考,大家一起來看看吧。
初中數(shù)學設計教案1
教學目標:
1.使學生能應用矩形定義、判定等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學生的分析能力
2.通過矩形判定的教學滲 透矛盾可以互相轉化的唯物辯證法思想
教法設計:觀察、啟發(fā)、總結、提高,類比探討,討 論分析,啟 發(fā)式.
教學重點:矩形的判定.
教學難點:矩形的 判定及性質的綜合應用.
教具學具準備:教具(一個活動的平行四邊形)
教學步驟:
一.復習提問:
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
二.引入新課
設問:1.矩形的判定.
2.矩形是有一個角是直角的平行四 邊形,在判定一個四邊形是不是矩 形 ,首先看這個四邊形是不是平行四邊 形,再看它兩邊的夾角是不是直角,這種用“定義”判定是最重要和最基本的判定方法(這 體現(xiàn)了定義作用的雙重性、性質和判定).除此之外,還有其它 幾種判定矩形的'方法,下面就來研究這 些方法.
方法1:有三個角是直角的四邊形是矩形.(并讓學生寫出推理過程。)
矩形判定方法2:對角錢相等的平行四邊形是矩形.(分析判定方法2和學生 一道寫出證明過程。)
歸納矩形判定方法(由學生小 結):
。1)一個角是直角的平行四邊形.(2)對角線相等的平行四邊形.
(3)有三個角是直角的四邊形.
2 .矩形判定方法的實際應用
除教材中所舉的門框或矩形零件外,還可以結合生產(chǎn)生活實際說明判定矩形的實用價值.
3.矩形知識的綜合應用。(讓學生思考,然后師生共同完成)
例:已知 的對角線 , 相交于
,△ 是等邊三角形, ,求這個平行
四邊形的面積(圖2).
分析解題思路:(1)先判定 為矩形.(2)求 出 △ 的直角邊 的長.(3)計算 .
三.小結:(1)矩形的判定方法l、2都是有兩個條件:①是平行四邊形,②有一個角是直角或對角線 相等.判定方法3的兩個條件是:①是四邊形,②有三個直 角.
矩形的判定方法有哪些?
一個角是直角的平行四邊形
對角線相等的平行四邊形-是矩形。
有三個角是直角的四邊形
(2)要注意不要不加考慮地把性質定理的逆命題作為矩形的判定定理.
補充例題
例1:已知:O是矩形A BCD對角線的交點,E、F、G、H分別是OA、OB、OC、OD 上的點,AE=BF=CG=DH,
求證:四邊形EFGH為矩形
分析:利用對角線互相平分且相等的四邊形是矩形可以證明
證明:∵ABCD為矩形
AC=BD
AC、BD互相平分于O
AO=BO=CO=DO
∵AE=BF=CG=DH
EO=FO=GO=HO
又HF=EG
EFGH為矩形
例2:判斷
。1)兩條對 角線相等四邊形是矩形()
(2)兩條對角線相等且互相平分的四邊形是矩形()
。3)有一個角是 直角的四邊形是矩形( )
。4)在矩形內部沒有和四個頂點距離相等的點()
分析及解答:
(1)如圖(1)四邊形ABC D中,AC=BD,但ABCD不為矩形,
。2)對角線互相平分的四邊形即平行四邊形,對角線相等的平行四邊形為矩形
(3)如圖(2),四邊形ABCD中,B=90,但ABCD不為矩形
。4)矩形 對角線的交點O到四個頂點距離相等,如圖(3),
初中數(shù)學設計教案2
教學目標
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程.
教學過程
1.情景導入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的'值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_
5.課堂總結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習。
初中數(shù)學設計教案3
學習目標:
1、會推導完全平方公式,并能用幾何圖形解釋公式;
2、利用公式進行熟練地計算;
3、經(jīng)歷探索完全平方公式的推導過程,發(fā)展符號感,體會特殊一般特殊的認知規(guī)律。
學習過程:
(一)自主探索
1、計算:(1)(a+b)2 (2)(a-b)2
2、你能用文字敘述以上的結論嗎?
(二)合作交流:
你能利用下圖的面積關系解釋公式(a+b)2=a2+2ab+b2嗎?與同學交流。
(三)試一試,我能行。
1、利用完全平方公式計算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[來源:中.考.資.源.網(wǎng)]
(四)鞏固練習
利用完全平方公式計算:
A組:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
B組:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
C組:
(1)1012 (2)542 (3)9972
(五)小結與反思
我的.收獲:
我的疑惑:
(六)達標檢測
1、(a-b)2=a2+b2+ .
2、(a+2b)2= .
3、如果(x+4)2=x2+kx+16,那么k= .
4、計算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
初中數(shù)學設計教案4
一、目的要求
使學生會用移項解方程。
二、內容分析
從本節(jié)課開始系統(tǒng)講解一元一次方程的解法。解一元一次方程是一個有目的、有根據(jù)、有步驟的變形過程。其目的是將方程最終變?yōu)閤=a的形式;其根據(jù)是等式的性質和移項法則,其一般步驟是去分母、去括號、移項、合并、系數(shù)化成1。
x=a的形式有如下特點:
。1)沒有分母;
。2)沒有括號;
(3)未知項在方程的一邊,已知項在方程的另一邊;
(4)沒有同類項;
。5)未知數(shù)的系數(shù)是1。
在講方程的解法時,要把所給方程與x=a的形式加以比較,針對它們的不同點,采取步驟加以變形。
根據(jù)方程的特點,以x=a的形式為目標對原方程進行變形,是解一元一次方程的基本思想。
解方程的第一節(jié)課告訴學生解方程就是根據(jù)等式的性質把原方程逐步變形為x=a的形式就可以了。重點在于引進移項這一變形并用它來解方程。
用等式性質1解方程與用移項解方程,效果是一樣的。但移項用起來更方便一些。
如解方程 7x-2=6x-4
時,用移項可直接得到 7x-6x=4+2。
而用等式性質1,一般要用兩次:
。1)兩邊都減去6x; (2)兩邊都加上2。
因為一下子確定兩邊都加上(-6x+2)不太容易。因此要引進移項,用移項來解方程。移項實際上也是用等式的`性質,在引進過程當中,要結合教科書第192頁及第193頁的圖強調移項要變號。移項解方程后的檢驗,可以驗證移項解方程的正確性。
三、教學過程
復習提問:
(1)敘述等式的性質。
。2)什么叫做方程的解?什么叫做解方程?
新課講解:
1.利用等式性質1可以解一些方程。例如,方程 x-7=5
的兩邊都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的兩邊都減去6x,就可以得到 7x-6x=-4,
x=-4。
然后問學生如何用等式性質1解下列方程 3x-2=2x+1。
2.當學生感覺利用等式性質1解方程3x-2=2x+1比較困難時,轉而分析解方程x-7=5,7x=6z-4的過程。解這兩個方程道首先把它們變形成未知項在方程的一邊,已知項在方程的另一邊的形式,要達到這個目的,可以在方程兩邊都加上(或減去)同一個數(shù)或整式。這步變形也相當于
也就是說,方程中的任何一項改變符號后可以從方程的一邊移到另一邊。
3.利用移項解方程x-7=5和7x=6x-4,并分別寫出檢驗,要強調移項時變號,檢驗時把數(shù)代入變形前的方程。
利用移項解前面提到的方程 3x-2=2x+l
解:移項,得 3x-2x=1+2。①
合并,得 x=3。
檢驗:把x-3分別代入原方程的左邊和右邊,得
左邊=3×3-2=7, 右邊=2×3+1=7, 左邊=右邊,
所以x=3是原方程的解。
在上面解的過程當中,由原方程①的移項是指:
。╨)方程左邊的-2,改變符號后,移到方程的右邊;
。2)方程右邊的2x,改變符號后,移到方程的左邊。
在寫方程①時,左邊先寫不移動的項3x(不改變符號),再寫移來的項(改變符號);右邊先寫不移動的項1(不改變符號),再寫移來的項(改變符號),便于檢查。
課堂練習:教科書第73頁 練習
課堂小結:
1.解方程需要把方程中的項從一邊移到另一邊,移項要變號。
2.檢驗要把數(shù)分別代入原方程的左邊和右邊。
四、課外作業(yè)
習題2。1 P73 復習鞏固
初中數(shù)學設計教案5
教學目標
。ㄒ唬┙虒W知識點
1.命題的組成:條件和結論。 2。命題的真假 。 3。了解數(shù)學史。
(二)能力訓練要求
1.能夠分清命題的題設和結論。會把命題改寫成“如果……,那么……”的形式;能 判斷命題的真假。
2.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法。
3.通過對歐幾里得《原本》 的介紹,感受幾何的演繹體系對數(shù)學發(fā)展和人類文明的價值。
(三)情感與價值觀要求
1.通過舉反例的方法來 判斷一個命題是假命題,說明任何事物都是正反兩方面的對立統(tǒng)一體。
2.通過了解數(shù)學知識,拓展學生的視野,從而激發(fā)學生學習的興趣。
教學重點
找出命題的條件(題設)和結論。
教學 難點
找出命題的條件和結論。
教學過程
、.巧設現(xiàn)實情境,引入課題
上節(jié)課我們研究了命題,那么什么叫命題呢?
下面大家來 想一想:
觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同的結構特征?
。1)如果兩個三角形的三條邊對應相等,那么這兩個三角形全等。
。2)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
(3)如果一個三角形是 等腰三角形,那 么這個三角形的兩個底角相等。
。4)如果一個四邊形的'對角線相等,那么這個四邊形是矩形。
。5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形。
學生分組討論。
、龠@五個命題都是用“如果……,那么……”的 形 式敘述的。
、诿總命題都 是由已知得到結論。
、圻@五個命題的每個命題都有條件和結論。
、.講授新課
1 .命題的組成:每個命題都有條件和結論兩部分組成。
條件是已知的事項,結論是由已知事項推斷 出的事項。
2.舉例說明 命題如何寫成“如果……,那么……”的形式
①明顯的。
、诓幻黠@的。
做一做
1.下列各命題的條件是什么?結論是 什么?
。1)如果兩個角相等,那么它們是對頂角;
。2)如果a>b,b>c,那么a=c;
。3)兩角和其中一角的對邊對應 相等的兩個三角形全等;
。4)菱形的四條邊都 相等;
。5)全等三角形的面積相等。
2.上述命題中哪 些是正確的?哪些是不正確的?你怎么知道它們是不正確的?
3.真命題和假命題
我們把正確的命題稱為真命題(tru e statement),不正確的命題稱為假命題(false statement)。
思考:如何證實一個命題是真命題呢?
4.我們這套教材有如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。
2.兩條平行線被第三條直線所 截,同位角相等。
3.兩邊及其夾角對應相等的兩個三角形全等。
4.兩角及其夾邊對應相等的兩個三角形全 等。
5.三邊對應相等的兩個 三角形全等。
6.全等三角形的對應邊相等,對應角相等。
Ⅲ.課堂練習
、.課時小結
本節(jié)課我們主要研究了命題的組成及真假。知道任何一個命題都是由條件和結論兩部分組成。命題分為真命題和 假命題。
在辨別真假命題時。注意:假命題只需舉一個反例即可。而真命題除公理和性質外,必須通過推理得證。
、.課后作業(yè)
2.預習提綱
(1)平行線的判定方法的證明
。2)如何進行推理
初中數(shù)學設計教案6
【教學目標】
1進一步認識方程及其解的概念。
2理解一元一次方程的概念,會根據(jù)簡單數(shù)量關系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。
【教學重點】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學的重點。
【教學難點】
用嘗試、檢驗的方法解一元一次方程的過程比較復雜,是本節(jié)教學的難點。
【學習準備】
1.下面哪些式子是方程?
。1)3
(2)1;
。2)x31;
。3)3x5;
。4)2xy4;
。5)x31;
。6)3x14.
2.方程與等式有什么聯(lián)系與區(qū)別?
方程是解決實際問題的一個重要數(shù)學模型,需要我們進一步學習研究。
【課本導學】
思考一閱讀并解答課本第114頁“合作學習”的三個問題,思考:
1.列方程就是根據(jù)問題中的相等關系,寫出含有未知數(shù)的等式。
(1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?
。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加
。3)張明投進x個,那么“小杰投進的球的個數(shù)”可以怎樣表示?“3人一共投進的球數(shù)”怎樣表示?
你是怎么理解“三人平均每人投進14個球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的.特點?請思考:
1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。
2.具有“合作學習”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習]完成課本第115頁課內練習
1.『歸納』判斷一個方程是不是一元一次方程應抓住哪幾個關鍵特點?
思考三閱讀課本第114頁倒數(shù)3行至第115頁正文結束,并思考下面的問題:
1.(1)如果一個數(shù)是方程有什么關系?
。2)如果一個數(shù)是方程350應該是多少?
。3)要判斷一個數(shù)是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12
14的解,這個數(shù)代入方程的左邊計算得到的值與14 3 1
x500的解,這個數(shù)代入方程的左邊計算得到的值10 2x12
14進行嘗試求解時,你認為x必須是整數(shù)嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。
[練習]完成課本第115頁課內練習
2.『歸納』1.檢驗一個數(shù)是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗的方法解一元一次方程,你覺得關鍵的步驟有哪些?【盤點收獲】
【學習檢測】
1.下列說法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
。╞)ab8(c)1257(d)5x82x9 3
3.設某數(shù)為x,根據(jù)下列條件列出求該數(shù)的方程:
。1)某數(shù)加上1,再乘以2,得6.
。2)某數(shù)與7的和的2倍等于10.
。3)某數(shù)的5倍比某數(shù)小3.
4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設還需租用x輛,則可列出方程44x+64=328.
(1)寫出一個方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學總是在“預設”與“生成”間交融進行,如何根據(jù)學情做好充分的預設,又根據(jù)課堂生成靈活應變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:
1.忽略課堂“火花”,錯失追問良機
在交流對方程的共同特征探討的環(huán)節(jié),有一個同學直接說出了“一元一次方程”的名稱.【片斷實錄】
師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數(shù)的,用x或y來表示.師(板書):嗯,都含有未知數(shù),這個未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學已經(jīng)預習了呢.我們看,剛才這位同學歸納了:都含有未知數(shù).那么請同學們看得更仔細一點,未知數(shù)在這里具有什么特征呢?
不難看出,筆者在這里沒有很好地抓住學生的課堂即時生成資源,用一句“嗯,……,這位同學已經(jīng)預習了呢.”輕輕帶過,仍然拉著學生回到了預設的軌道“……,請同學們看得更仔細一點,未知數(shù)在這里具有什么特征呢?”如果當時直接問她“那么請你講講什
初中數(shù)學設計教案7
一、 教學目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學過程
1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
。-2) ×(-3)=
。2)學生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
(+)×(-)=( ) 異號得
。-)×(-)=( ) 同號得
②積的`絕對值等于 。
③任何數(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學生述說每一步理由。
。2)引導學生觀察、分析例子中兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學生做練習,教師評析。
。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數(shù)相乘的符號法則。
初中數(shù)學設計教案8
教材與學情:
解直角三角形的應用是在學生熟練掌握了直角三角形的解法的基礎上進行教學,它是把一些實際問題轉化為解直角三角形的數(shù)學問題,對分析問題能力要求較高,這會使學生學習感到困難,在教學中應引起足夠的重視。
信息論原理:
將直角三角形中邊角關系作為已有信息,通過復習(輸入),使學生更牢固地掌握(貯存);再通過例題講解,達到信息處理;通過總結歸納,使信息優(yōu)化;通過變式練習,使信息強化并能靈活運用;通過布置作業(yè),使信息得到反饋。
教學目標:
、闭J知目標:
⑴懂得常見名詞(如仰角、俯角)的意義
、颇苷_理解題意,將實際問題轉化為數(shù)學
、悄芾靡延兄R,通過直接解三角形或列方程的方法解決一些實際問題。
⒉能力目標:培養(yǎng)學生分析問題和解決問題的能力,培養(yǎng)學生思維能力的靈活性。
、城楦心繕耍菏箤W生能理論聯(lián)系實際,培養(yǎng)學生的對立統(tǒng)一的觀點。
教學重點、難點:
重點:利用解直角三角形來解決一些實際問題
難點:正確理解題意,將實際問題轉化為數(shù)學問題。
信息優(yōu)化策略:
、旁趯W生對實際問題的探究中,神經(jīng)興奮,思維活動始終處于積極狀態(tài)
、圃跉w納、變換中激發(fā)學生思維的靈活性、敏捷性和創(chuàng)造性。
、侵匾晫W法指導,以加速教學效績信息的順利體現(xiàn)。
教學媒體:
投影儀、教具(一個銳角三角形,可變換圖2-圖7)
高潮設計:
1、例1、例2圖形基本相同,但解法不同;這是為什么?學生的思維處于積極探求狀態(tài)中,從而激發(fā)學生學習的積極性和主動性
2、將一個銳角三角形紙片通過旋轉、翻折等變換,使學生對問題本質有了更深的認識
教學過程:
一、復習引入,輸入并貯存信息:
1.提問:如圖,在Rt△ABC中,∠C=90°。
、湃卆、b、c有什么關系?
⑵兩銳角∠A、∠B有怎樣的關系?
、沁吪c角之間有怎樣的關系?
2.提問:解直角三角形應具備怎樣的條件:
注:直角三角形的邊角關系及解直角三角形的條件由投影給出,便于學生貯存信息
二、實例講解,處理信息:
例1.(投影)在水平線上一點C,測得同頂?shù)难鼋菫?0°,向山沿直線 前進20為到D處,再測山頂A的仰角為60°,求山高AB。
、乓龑W生將實際問題轉化為數(shù)學問題。
、品治觯呵驛B可以解Rt△ABD和
Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解題過程,學生練習。
、人伎迹杭偃纭螦DB=45°,能否直接來解一個三角形呢?請看例2。
例2.(投影)在水平線上一點C,測得山頂A的仰角為30°,向山沿直線前進20米到D處,再測山頂A的仰角為45°,求山高AB。
分析:
、旁赗t△ABC和Rt△ABD中,都沒有兩個已知元素,故不能直接解一個三角形來求出AB。
⑵考慮到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個直角三角形的.直角邊,但CD=BC=BD,啟以學生設AB=X,通過 列方程來解,然后板書解題過程。
解:設山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、歸納總結,優(yōu)化信息
例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。
四、變式訓練,強化信息
(投影)練習1:如圖,山上有鐵塔CD為m米,從地上一點測得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。
練習2:如圖,海岸上有A、B兩點相距120米,由A、B兩點觀測海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。
練習3:在塔PQ的正西方向A點測得頂端P的
仰角為30°,在塔的正南方向B點處,測得頂端P的仰角為45°且AB=60米,求塔高PQ。
教師待學生解題完畢后,進行講評,并利用教具揭示各題實質:
⑴將基本圖形4旋轉90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉90°,即可得圖7的立體圖形。
、埔龑W生歸納三個練習題的等量關系:
練習1的等量關系是AB=AB;練習2的等量關系是AD+BD=AB;練習3的等量關系是AQ2+BQ2=AB2
五、作業(yè)布置,反饋信息
《幾何》第三冊P57第10題,P58第4題。
板書設計:
解直角三角形的應用
例1已知:………例2已知:………小結:………
求:………求:………
解:………解:………
練習1已知:………練習2已知:………練習3已知:………
求:………求:………求:………
解:………解:………解:………
初中數(shù)學設計教案9
教學目標
1.使學生認識字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學的一大進步;
2.了解代數(shù)式的概念,使學生能說出一個代數(shù)式所表示的數(shù)量關系;
3.通過對用字母表示數(shù)的講解,初步培養(yǎng)學生觀察和抽象思維的能力;
4.通過本節(jié)課的教學,使學生深刻體會從特殊到一般的的數(shù)學思想方法。
教學建議
1. 知識結構:本小節(jié)先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進而引出代數(shù)式的概念。
2.教學重點分析:教科書,介紹了小學用字母表示數(shù)的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡明、普遍的優(yōu)越性,用字母表示是數(shù)學從算術到代數(shù)的一大進步,是代數(shù)的`顯著特點。運用算術的方法解決問題,是小學學生的思維方法 ,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數(shù)式的概念課文沒有直接給出,而是用實例形象地說明了代數(shù)式的概念。對代數(shù)式的概念可以從三個方面去理解:
(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關系,用字母表示數(shù)具有簡明、普遍的優(yōu)越性.
(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時出現(xiàn),單獨的一個數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.
等都不是代數(shù)式.
3.教學難點分析:能正確說出一個代數(shù)式的數(shù)量關系,即用語言表達代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運算及其順序。用語言表達代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點。
如:說出代數(shù)式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
初中數(shù)學設計教案10
教學目標:
利用數(shù)形結合的數(shù)學思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。
教學重點和難點:
運用數(shù)形結合的思想方法進行解二次函數(shù),這是重點也是難點。
教學過程:
。ㄒ唬┮耄
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
。1)如何畫圖
。2)頂點、圖象與坐標軸的交點
。3)所形成的三角形以及四邊形的面積
(4)對稱軸
從上面的問題導入今天的課題二次函數(shù)中的圖象與性質。
。ǘ┬率冢
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
(三)提高練習
根據(jù)我們學校人人皆知的船模特色項目設計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的.情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質在解題中的作用。
。ㄋ模┳寣W生討論小結(略)
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標平面內,點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
(2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內實際橋長(備用數(shù)據(jù): ,計算結果精確到1米)
初中數(shù)學設計教案11
①結合你對一元一次方程中的一次的理解,說一說你對一次函數(shù)中的“一次”的'理解. ②k可以是怎樣的數(shù)?
③你怎樣認識一次函數(shù)和正比例函數(shù)的關系?
一個常數(shù)b的和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數(shù),k≠0 )的函數(shù),叫做一次函數(shù), 當
b=0時,
Y=kx+b即Y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)。
例1、下列函數(shù)中,Y是X的一次函數(shù)的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關系式,并判
解釋與應用
斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式
初中數(shù)學設計教案12
教學目標:
1、知識與技能:
⑴、在具體的現(xiàn)實情境中,認識一個角的余角和補角,掌握余角和補角的性質。
⑵、了解方位角,能確定具體物體的方位。
2、過程與方法:
進一步提高學生的抽象概括能力,發(fā)展空間觀念和知識運用能力,學會簡單的邏輯推理,并能對問題的結論進行合理的猜想。
3、情感態(tài)度與價值觀:
體會觀察、歸納、推理對數(shù)學知識中獲取數(shù)學猜想和論證的重要作用,初步數(shù)學中推理的嚴謹性和結論的確定性,能在獨立思考和小組交流中獲益。
重、難點及關鍵:
1、重點:認識角的互余、互補關系及其性質,確定方位是本節(jié)課的重點。
2、難點:通過簡單的推理,歸納出余角、補角的性質,并能用規(guī)范的語言描述性質是難點。
3、關鍵:了解推理的意義和推理過程是掌握性質的關鍵。
教學過程:
一、引入新課:
讓學生觀察意大利著名建筑比薩斜塔。
比薩斜塔建于1173年,工程曾間斷了兩次很長的時間,歷經(jīng)約二百年才完工。設計為垂直建造,但是在工程開始后不久便由于地基不均勻和土層松軟而傾斜。
二、新課講解:
1、探究互為余角的定義:
如果兩個角的和是90(直角),那么這兩個角叫做互為余角,其中一個角是另一個角的余角。即:1是2的余角或2是1的余角。
2、練習⑴:
圖中給出的各角,那些互為余角?
3、探究互為補角的定義:
如果兩個角的和是180(平角),那么這兩個角叫做互為補角,其中一個角是另一個角的補角。即:3是4的補角或4是3的補角。
4、練習⑵:
(1)圖中給出的各角,那些互為補角?
。2)填下列表:
a的余角 a的補角
5
32
45
77
6223
x
結論:同一個銳角的補角比它的余角大90。
。3)填空:
、70的余角是 ,補角是 。
、赼(90)的它的余角是 ,它的補角是 。
重要提醒:ⅰ(如何表示一個角的余角和補角)
銳角a的余角是(90a )
a的補角是(180a )
、⒒ビ嗪突パa是兩個角的數(shù)量關系,與它們的位置無關。
5、講解例題:
例1:若一個角的補角等于它的余角4倍,求這個角的度數(shù)。
解: 設這個角是x ,則它的補角是( 180-x),余角是(90-x) 。
根據(jù)題意得:
。180-x)= 4 (90-x)
解之得: x =60
答:這個角的度數(shù)是60 。
6、練習⑶:
一個角的'補角是它的3倍,這個角是多少度?
7、探究補角的性質:
如圖1 與2互補,3 與4互補 ,如果1=3,那么2與4相等嗎?為什么?
教師活動:操作多媒體演示。
學生活動:觀察圖形的運動,得出結果:4
補角性質:同角或等角的補角相等
教師活動:向學生說明,以上從觀察圖形得到的結論,還可以從理論上說明其理由。
∵ 1 +2=180, 3 +4=180
2=180-1 , 4=180- 3
∵ 1 =3
180-1 =180- 3
即:2 =4
8、探究余角的性質:
如圖1 與2互余,3 與4互余 ,如果1=3,那么2與4相等嗎?為什么?
教師活動:操作多媒體演示。
學生活動:觀察圖形的運動,得出結果:4
余角性質:同角或等角的余角相等
教師活動:向學生說明,以上從觀察圖形得到的結論,還可以從理論上說明其理由。
∵ 1 +2=90, 3 +4=90
2=90-1 , 4=90- 3
∵ 1 =3
90-1 =90- 3
即:2 =4
9、講解例題:
例2:如圖,AOB=90COD=EOD=90,C,O,E在一條直線上,且4,請說出1與3之間的關系?并試著說明理由?
解:3
∵ 2= COD=90
3+2= AOB=90
3 (等角的余角相等)
10、練習⑷:
如圖AOB = 90 COD = 90 則1與2是什么關系?
11、講解方位角:
(1)認識方位:
正東、正南、正西、正北、東南、
西南、西北、東北。
。2)找方位角:
、∫业貙椎氐姆轿唤 ⅱ甲地對乙地的方位角
12、講解例題:
例3:選擇題:
(1)A看B的方向是北偏東21,那么B看A的方向( )
A:南偏東69 B:南偏西69 C:南偏東21 D:南偏西21
(2)如圖,下列說法中錯誤的是( )
A: OC的方向是北偏東60
B: OC的方向是南偏東60
C: OB的方向是西南方向
D: OA的方向是北偏西22
(3)在點O 北偏西60的某處有一點A,在點O南偏西20的某處有一點B,則AOB的度數(shù)是( )
A:100 B:70 C:180 D:140
例4:如圖.貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60的方向上,同時,在它北偏東40,南偏西10,西北(即北偏西45)方向上又分別發(fā)現(xiàn)了客輪B,貨輪C和海島D.仿照表示燈塔方位的方法畫出表示客輪B,貨輪C和海島D方向的射線.
三、課堂小結:
1、本節(jié)課學習了余角和補角,并通過簡單的推理,得到出了余角和補角的性質。
2、了解方位角,學會了確定物體運動的方向。
四、課外作業(yè):
1、課本第114頁:9、11、12題。
2、學習指要第78-79頁:訓練二和訓練三。
課后反思:
初中數(shù)學設計教案13
教學內容
24。2圓的切線(1)
教學目標 使學生掌握切線的識別方法,并能初步運用它解決有關問題
通過切線識別方法的學習,培養(yǎng)學生觀察、分析、歸納問題的能力
教學重點 切線的識別方法
教學難點 方法的理解及實際運用
教具準備 投影儀,膠片
教學過程 教師活動 學生活動
。ㄒ唬⿵土 情境導入
1、復習、回顧直線與圓的三 種位置關系。
2、請學生判斷直線和圓的位置關系。
學生判斷的過程,提問:你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學生的回答,繼續(xù)提出 問題:如何界定直線與圓是否只有一個公共點?教師指出,根據(jù)切線的定義可以識別一條直線是不是圓的切線,但有時使用定義識別很不方便,為此我們還要學習識別切 線的其它方法。(板書課題) 搶答
學生總結判別方法
。ǘ
實踐與探索1:圓的切線的判斷方法 1、由上面 的復習,我們可以把上節(jié)課所學的切線的定義作為識別切線的方法1——定義法:與圓只有一個公共點的直線是圓的切線。
2、當然,我們還可以由上節(jié)課所學的用圓心到直線的距離 與半徑 之間的關系來判斷直線與圓是否相切,即:當 時,直線與圓的位置關系是相切。以此作為識別切線的方法2——數(shù)量關系法:圓心到直線的距離等于半徑的直線是圓的切線 。
3、實驗:作⊙O的半徑OA,過A作l⊥OA可以發(fā)現(xiàn):
。1)直線 經(jīng)過半徑 的外端點 ;
。2)直線 垂直于半徑 。這樣我們就得到了從位 置上來判斷直線是圓的切線的方法3——位置關系法:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。 理解并識記圓的切線的幾種方法,并比較應用。
通過實驗探究圓的切線的位置判別方法,深入理解它的兩個要義。
三、課堂練習
思考:現(xiàn)在,任意給定一個圓,你能不能作出圓的切線?應該如何作?
請學生回顧作圖過程,切線 是如何作出來的?它滿足哪些條件? 引導學生總結出:①經(jīng)過半徑外端;②垂直于這條半徑。
請學生繼續(xù)思考:這兩個條件缺少一個行不行? (學生畫出反例圖)
(圖1) (圖2) 圖(3)
圖(1)中直線 經(jīng)過半徑外端,但不與半徑垂直; 圖(2)中直線 與半徑垂直,但不經(jīng)過半徑外端。 從以上兩個反例可以看出,只滿足其中一個條件的.直線不是圓的切線。
最后引導學生分析,方法3實際上是從前一節(jié)所講的“圓 心到直線的距離等于半徑時直線和圓相切”這個結論直接得出來的,只是為了便于應用把它改寫成“經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。 試驗體會圓的位置判別方法。
理解位置判別方法的兩個要素。
。ㄋ模⿷门c拓展 例1、如圖,已知直線AB經(jīng)過⊙O上的點A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?
例2、如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,BAD=B=30,邊BD交圓于點D。BD是⊙ O的切線嗎?為什么?
分析:欲證BD是⊙O的切線,由于BD過圓上點D,若連結OD,則BD過半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。
教師板演,給出解答過程及格式。
課堂練習:課本練習1-4 先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質區(qū)別。
注意圓的切線的特征與識別的區(qū)別。
。ㄋ模┬〗Y與作業(yè) 識 別一條直線是圓的切線,有 三種方法:
。1)根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;
。3)根據(jù)直線的位置關系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的 切線,
說明一條直線是圓的切線,常常需要作輔助線,如果 已知直線過圓上某 一點,則作出過 這一點的半徑,證明直線垂直于半徑即可(如例2)。
各抒己見,談收獲。
。ㄎ澹┌鍟O計
識別一條直線是圓的切線,有三種方法: 例:
。1 )根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓 的切線;
。3)根據(jù)直線的位置關系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的 切線,
說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點,則作出過 這一點的半徑,證明 直線垂直于半徑
(六)教學后記
教學內容 24。2圓的切線(2) 課型 新授課 課時 執(zhí)教
教學目標 通過探究,使學生發(fā)現(xiàn)、掌握切線長定理,并初步長定理,并初步學會應用切線長定理解決問題,同時通過從三角形紙片中剪出最大圓的實驗的過程中發(fā)現(xiàn)三角形內切圓的畫法,能用內心的性質解決問題。
教學重點 切線長定理及其應用,三角形的內切圓的畫法和內心的性質。
教學難點 三角形的內心及其半徑的確定。
教具準備 投影儀,膠片
教學過程 教師 活動 學生活動
。ㄒ唬⿵土晫耄
請同學們回顧一下,如何判斷一條直線是圓的切線?圓的切線具有什么性質?(經(jīng)過半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑。)
你能說明以下這個問題?
如右圖所示,PA是 的平分線,AB是⊙O的切線,切點E,那么AC是⊙O的切線嗎?為什么?
回顧舊知,看誰說的全。
利用舊知,分析解決該問題。
。ǘ
實踐與探索 問題1、從圓外一點可以作圓的幾條切線?請同學們畫一畫。
2、請問:這一點 與切點的 兩條線段的長度相等嗎?為什么?
3、切線長的定義是什么?
通過以 上幾個問題的解決,使同學們得出以下的結論:
從圓外一點可以引圓的兩條切線,切線長相等。這一點與圓心的連線
平分兩條切線的夾角。 在解決以上問題時,鼓勵同學們用不同的觀點、不同的知識來解決問題,它既可以用書上闡述的對稱的觀點解決,也可以用以前學習的其他知識來解決問題。
。ㄈ┩卣古c應用 例:右圖,PA、PB是,切點分別是A、B,直線EF也是⊙O的切線,切點為P,交PA、PB為E、F點,已知 , ,(1)求 的周長;(2)求 的度數(shù)。
解:(1)連結PA、PB、EF是⊙O的切線
所以 , ,
所以 的周長 (2)因為PA、PB、EF是⊙O的切線
所以 , ,,
所以
所以
畫圖分析探究,教學中應注重基本圖形的教學,引導學生發(fā)現(xiàn)基本圖形,應用基本圖形解決問題。
。ㄋ模┬〗Y與作業(yè) 談一下本節(jié)課的 收獲 ? 各抒己見,看誰 說得最好
(五)板書設計
切線(2)
切線長相等 例:
切線長性質
點與圓心連 線平分兩切線夾角
。┙虒W后記
初中數(shù)學設計教案14
一.學生情況分析
學生已經(jīng)學習了平行四邊形的性質和判定,也學習了一種特殊的平行四邊形菱形的性質和判定,對于類似的問題有一定的學習精力、經(jīng)驗和感受,這將更有利于學生對本節(jié)課的學習。
二.教學任務分析
教學目標:
知識目標:
1.掌握正方形的定義,弄清正方形與平行四邊形、菱形、矩形的關系。
2.掌握正方形的性質定理1和性質定理2。
3.正確運用正方形的性質解題。
能力目標:
1.通過四邊形的從屬關系滲透集合思想。
2.在直觀操作活動和簡單的說理過程中,發(fā)展學生初步的合情推理能力、主動探究習慣,逐步掌握說理的基本方法。
情感與價值觀
1.通過理解四種四邊形內在聯(lián)系,培養(yǎng)學生辯證觀點
教學重點:正方形的性質的應用.
教學難點:正方形的性質的應用.
三、教學過程設計
課前準備
教具準備: 一個活動的.平行四邊形木框、白紙、剪刀.
學生用具:白紙、剪刀
教學過程設計分成四分環(huán)節(jié):
第一環(huán)節(jié):巧設情境問題,引入課題
第二環(huán)節(jié):講授新課
第三環(huán)節(jié):新課小結
第四環(huán)節(jié):布置作業(yè)
第一環(huán)節(jié) 巧設情境問題,引入課題
進入正題,提出本節(jié)課的研究主題正方形
第二環(huán)節(jié) 講授新課
主要環(huán)節(jié)
。1)呈現(xiàn)兩種通過不同途徑得到正方形的過程,給正方形下定義
。2)討論正方形的性質
。3)通過練習加強對正方形性質的理解
。4)尋找平行四邊形、矩形、菱形、正方形之間的相互關系。
。5)尋找正方形的判定方法
目的:
1. 正方形是特殊的平行四邊形,也是特殊的矩形和菱形,因此想得到一個正方形,可以在矩形的基礎上強化邊的條件得到,也可以在菱形的基礎上強化角的條件得到。于是在課上呈現(xiàn)這兩種變化,為后面尋求平行四邊形、矩形、菱形、正方形的關系打下基礎。
2. 由于采用了兩種正方形形成的方式,因此正方形的性質和判定方法都可以從中挖掘和發(fā)現(xiàn)。
大致教學過程
呈現(xiàn)一個平行四邊形變成正方形的全過程.(演示)
由于平行四邊形具有不穩(wěn)定性,所以先把平行四邊形木框的一個角變?yōu)橹苯,再移動一條短邊,截成有一組鄰邊相等,此時平行四邊形變成了一個正方形.
這個變化過程,可用如下圖表示
由此可知:正方形是一組鄰邊相等的矩形.即:一組鄰邊相等的矩形叫做正方形.
這個平行四邊形木框還可以這樣變化:先移動一條短邊,截成有一組鄰邊相等的平行四邊形,再把一個角變成直角,此時的平行四邊形也變成了正方形.
這個變化過程,也可用圖表示
你能根據(jù)上面的變化過程,給正方形下定義嗎?
一組鄰邊相等的平行四邊形是菱形.正方形是一個角為直角的菱形,所以可以說:有一個角是直角的菱形叫做正方形.
由此可知:正方形是特殊的矩形,即是鄰邊相等的矩形,也是特殊的菱形,即是有一個角是直角的菱形.
因為正方形是平行四邊形、菱形、矩形,所以它的性質是它們的綜合,不僅有平行四邊形的所有性質,也有矩形和菱形的特殊性質,即:正方形具有平行四邊形、菱形、矩形的一切性質.
正方形的性質:
邊:對邊平行、四邊相等
角:四個角都是直角
對角線:對角線相等,互相垂直平分,每條對角線平分一組對角.
正方形是軸對稱圖形嗎?如是,它有幾條對稱軸?
正方形是軸對稱圖形,它有四條對稱軸,即:兩條對角線,兩組對邊的中垂線.
例題
。劾1]如圖,四邊形ABCD是正方形,兩條對角線相交于點O,求AOB,OAB的度數(shù).
分析:本題是正方形的性質的直接應用.正方形的性質很多,要恰當運用,本題主要用到正方形的對角線的性質,即正方形的軸對稱性.
解:正方形ABCD是菱形,對角線AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且對角線AC平分BAD,因此:OAB=45
拿出準備好的剪刀、白紙來做一做
將一張長方形紙對折兩次,然后剪下一個角,打開,怎樣剪才能剪出一個正方形?(學生動手折疊,想,剪切)
只要保證剪口線與折痕成45角即可.因為正方形的兩條對角線把它分成四個全等的等腰直角三角形,把折痕作對角線,這時只需剪一個等腰直角三角形,打開即是正方形.
正方形是平行四邊形、矩形、又是菱形,那么它們四者之間有何關系呢?
正方形、矩形、菱形及平行四邊形四者之間有什么關系呢?
它們的包含關系如圖:
此圖給出了正方形的判別條件,即怎樣判定一個平行四邊形是正方形?
先判定一個四邊形是平行四邊形,再判定這個平行四邊形是矩形,然后再判定這個矩形是菱形;或者先判定一個四邊形是菱形,再判定這個菱形是矩形.
由于判定平行四邊形、矩形、菱形的方法各異,所給出的條件不一樣,所以判定一個四邊形是不是正方形的具體條件相應可作變化,在應用時要仔細辨別后才可以作出判斷.
第三環(huán)節(jié) 課堂練習
教材 隨堂練習1,2
第四環(huán)節(jié) 課時小結
正方形的定義:一組鄰邊相等的矩形.
正方形的性質與平行四邊形、矩形、菱形的性質可比較如下:(出示小黑板)
第五環(huán)節(jié) 課后作業(yè)
課本習題4.7 1,2,3.
四.教學設計反思
在教材中,并沒有明確的給出正方形的判定定理。那么教師在課堂上應該幫助學生理清思路,使他們明確判定的方法。
為了實現(xiàn)這個目標,在本節(jié)課的開始,教師就采取了兩種方式呈現(xiàn)正方形的形成過程,在直觀上幫助學生認識了正方形與矩形、正方形與菱形之間的關系;在講解正方形性質的過程中又再次強化了這種認識。通過層層鋪墊,讓學生明確矩形+鄰邊相等就是正方形,菱形+一個直角就是正方形,如何判定圖形是矩形或是菱形,前面已經(jīng)學習過,因此關于正方形的判定是需要一個條件一個條件“疊加”完成的。
初中數(shù)學設計教案15
一、學生起點分析
通過第一節(jié)的學習,學生已對平移的基本性質有了的認識,能否利用平移的基本性質來學習有關畫圖的操作技能,能否探索圖形之間的平移關系成了本節(jié)課學習的重要任務。
二、教學任務分析
本節(jié)課的主要內容是通過實例,讓學生經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,掌握有關畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
教學目標
知識目標:
1.簡單平面圖形平移后的圖形的作法.
2.確定一個圖形平移的位置的條件.
能力訓練:
1.對具有平移特征的圖形進行觀察、分析、畫圖和動手操作等過程,掌握畫圖技能.
2.能夠按要求作出簡單平面圖形平移后的圖形.
情感與價值觀:
1.通過畫圖,進一步培養(yǎng)學生的動手操作能力.
2.對具有平移特征的圖形進行觀察、分析、畫圖過程中,進一步發(fā)展學生的審美觀念.
教學重點:簡單平面圖形平移后的圖形的作法.
教學難點:簡單平面圖形平移后的圖形的作法.
三、教學過程設計
第一環(huán)節(jié) 復習回顧平移的基本性質,引入課題
如圖,將線段AB平移,得到線段AB,則圖中的線段有怎樣的位置關系?有哪些相等的線段?
通過對上節(jié)課內容的回顧,幫助學生復習平移的基本性質:經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等。(AA∥BB且AA=BB, A B∥AB且AB =AB)
如果給出了線段AB,也給出了平移方向和平移距離,你能作出選段AB經(jīng)平移后的對應選段AB嗎?
這節(jié)課我們就來研究:簡單的平移作圖.
第二環(huán)節(jié) 觀察操作、探索歸納平移的作法
、乓阎段AB和平移距離及方向,求作AB的對應線段AB。
讓學生觀察、動手畫圖。
得出已知平移距離和方向的作圖:過A作平移方向的平行線,在平行線上沿平移方向上截取線段,使其長度等于平移距離,即得點A的對稱點A。點B的對應點B的做法同上。
(2)已知線段AB和平移后點A的對應點A ,求作AB的對應線段AB[來源:中.考.資.源.網(wǎng)]
和上面的(1)相比,這里的新問題,不知道平移距離和平移方向,而只知道某點的對應點,該怎么辦?鼓勵學生思考、交流、動手畫圖。
連接A,A,得到線段AA,則AA的長度就是平移距離,有A到A的方向就是平移方向。于是問題轉化為前面已經(jīng)解決的問題了。
在這兩個問題的畫圖中,若有學生有不同的畫法,應鼓勵學生交流、討論。這時,可以思考:“畫出選段AB的方法只有(1)中的方法嗎?還有沒有其他的畫法”。若學生在處理簡單的線段問題時,畫法比較單一,這個討論可以放在(3)之后。
。3)將(2)中的圖形略微復雜化一些。已知平面圖形以及該圖形上的某一點經(jīng)平移后的對應點,求作平移后的平面圖形。
例題1 經(jīng)過平移,△ABC的頂點A移到了點D,作出平移后的三角形。
留給學生完成。在學生完成平移的作圖后,根據(jù)前面的若干個作圖問題,增加“議一議”內容。
、龠有什么其他方法,作出△DEF嗎?
、诖_定一個圖形平移后的位置,除需知道原來圖形的位置外,還需要什么條件?
對于①,教師要幫助學生整理平移作圖的常用方法以及這些作法所依據(jù)的原理。
方法一:過點B、點C,分別作線段BE,CF,使得它們與線段AD平行且相等,連接DE,DF,EF,△DEF就是△ABC平移后的圖形。
方法二:過點D分別作出與AB,AC平行且相等的線段DE,DF,連接EF,△DEF就是△ABC平移后的`圖形。
方法三:因為平移后的圖形與原圖形是全等,所以過點B作線段BE,使得它與線段AD平行且相等,得到另一個對應點E(或者過點D作與AB平行且相等的線段DE,得到另一個對應點E)后,按原方向作△ABC的全等△DEF。
對于②,確定一個圖形平移后的位置的全部條件為:
(1)圖形原來的位置 (2)平移方向 (3)平移距離.
這三個條件缺一不可.只有這三個條件都具備,我們才能準確地找到一個圖形平移后的位置,進而作出它平移后的圖形.
第三環(huán)節(jié) 課堂練習
1.如圖,將字母A按箭頭所指的方向平移3cm,作出平移后的圖形。
解:在字母A上,找出關鍵的5個點(如圖),分別過這5個點按箭頭方向作5條長3cm的線段,將所作線段的另5個端點按原來的方式連接,即可得到字母A平移后的圖形。
2.
將圖中的字母N沿水平方向向右平移3cm,作出平移后的圖形。
3.圖中的窗欞輪廓是由一個半圓和一個矩形組成,試作出這個圖案向左平移10格后的圖案。
解:分別確定矩形的四個頂點和半圓的圓心,向左平移10格后的位置,畫半圓(以“圓心”平移后的位置為圓心,以6格的邊長為直徑),連線即可。
第四環(huán)節(jié) 課時小結
本節(jié)課我們通過作平面圖形平移的圖形,進一步理解了平移的性質,并且還知道要確定一個圖形平移后的位置,需要有:①此圖形原來的位置.②平移方向.③平移距離等三個條件.
在作圖時,要注意語言的表達
第五環(huán)節(jié) 課后作業(yè)
1.必做習題:習題3.2 2,3,4
2.選做習題
。1)如圖,正方形ABCD邊長為4,沿對角線所在直線l將該正方形向右平移到EFGH的位置,已知△ODH的面積為92,求平移的距離.
。2)如圖,在△ABC中,D,E是BC上的點,且BD=CE,求證:AB+ACAD+AE.
四、教學設計反思
在教學過程的設計上,通過對上節(jié)課學習的平移的基本性質的復習,為新知的探索作好鋪墊,進而引出新課課題簡單的平移作圖。在例題的選擇和設計上,循序漸進,前一題往往是后一題的基礎,后一題通過化歸都可轉化為前一題的問題,在課堂教學中努力滲透數(shù)學中重要的思想方法化歸。
在練習的設計上,遵循由淺入深的原則,循序漸進地讓學生逐步熟練應用平移的特征、平移作圖的方法,從而體現(xiàn)數(shù)學的價值;同時,設計了不同難度的習題,提供給不同層次的學生,滿足不同層次學生的需要,讓“不同的人在數(shù)學上得到不同的發(fā)展”。
【初中數(shù)學設計教案】相關文章:
初中數(shù)學設計教案02-25
初中數(shù)學教案設計09-29
初中數(shù)學設計教案(14篇)03-02
初中數(shù)學設計教案14篇02-28
初中數(shù)學設計教案(15篇)03-01
初中數(shù)學設計教案15篇02-26
初中數(shù)學教案設計(20篇)08-01
數(shù)學設計教案01-02