- 相關推薦
初學因式分解的“四個注意”
因式分解初見于九年義務教育三年制初中教材《代數(shù)》第二冊,在初二上學期講授,但它的內(nèi)容卻滲透于整個中學數(shù)學教材之中。學習它,既可以復習初一的整式四則運算,又為本冊下一章分式打好基礎;學好它,既可以培養(yǎng)學生的觀察、注意、運算能力,又可以提高學生綜合分析和解決問題的能力。其中四個注意,則必須引起師生的高度重視。
因式分解中的四個注意散見于教材第5頁和第15頁,可用四句話概括如下:首項有負常提負,各項有“公”先提“公”,某項提出莫漏1,括號里面分到“底”。現(xiàn)舉數(shù)例,說明如下,供參考。
例1 把-a^2-b^2+2ab+4分解因式。
解:-a^2-b^2+2ab+4=-(a^2-2ab+b^2-4)=-(a-b+2)(a-b-2)
這里的“負”,指“負號”。如果多項式的第一項是負的,一般要提出負號,使括號內(nèi)第一項系數(shù)是正的。防止學生出現(xiàn)諸如-9x^2+4y^2=(-3x)^2-(2y)^2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤。但也不能見負號就先“提”,要對全題進行分析,
如例2 △ABC的三邊a、b、c有如下關系式:-c^2+a^2+2ab-2bc=0,求證這個三角形是等腰三角形。
分析:此題實質(zhì)上是對關系式的等號左邊的多項式進行因式分解。
證明:∵-c^2+a^2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.
又∵a、b、c是△ABC的三條邊,∴a+2b+c>0,∴a-c=0,
即a=c,△ABC為等腰三角形。
例3把-12x^2ny^n+18x^n+2y^n+1-6x^ny^n-1分解因式。解:-12x^2ny^n+18x^n+2y^n+1-6x^ny^n-1=-6x^ny^n-1(2x^ny-3x^2y^2+1)
這里的“公”指“公因式”。如果多項式的各項含有公因式,那么先提取這個公因式,再進一步分解因式;這里的“1”,是指多項式的某個整項是公因式時,先提出這個公因式后,括號內(nèi)切勿漏掉1。防止學生出現(xiàn)諸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2[3(x-1)-4p]=2p(x-1)2(3x-4p-3)的錯誤。
例4 在實數(shù)范圍內(nèi)把x^4-5x^2-6分解因式。
解:x^4-5x^2-6=(x^2+1)(x^2-6)=(x^2+1)(x+6)(x-6)
這里的“底”,指分解因式,必須進行到每一個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。其中包含提公因式要一次
[1] [2]
【初學因式分解的“四個注意”】相關文章:
學校個別心理輔導的四個注意04-27
自學考試答題注意四個要點04-30
小升初英語背誦要注意的四個方面04-30
因式分解公式06-04
因式分解教案03-19
基民波段操作需注意四個問題04-30
家長課堂:初中家長應該注意的四個小事04-27
人教版因式分解教案01-04
初中因式分解方法04-30
初學游泳作文07-13