- 相關推薦
認識不等式教案設計
教學目標:
通過對具體實例的學習,使學生能夠了解生活中的不等量關系,理解不等式的概念,知道什么是不等式的解,為以后學習不等式的解法奠定基礎.
知識與能力:
1.通過對具體事例的分析和探索,得到生活中不等量的關系.
2.通過理解得到不等式的概念,從而使學生經(jīng)歷實際問題中數(shù)量的分析、抽象過程,體會現(xiàn)實中有各種各樣錯綜復雜的數(shù)量關系.
3.了解不等式的意義,知道不等式是用來刻畫生活中的數(shù)量關系的.
4.知道什么是不等式的解.
過程與方法:
1.引導學生分析具體事例,從對具體事例的分析中得到不等量關系.
2.引導并幫助學生列出不等式,分析不等式的成立條件.
3.通過分析、抽象得到不等式的概念和不等式的解的概念.
4.通過習題鞏固和加深對概念的理解.
情感、態(tài)度與價值觀:
1.通過學生的分析和抽象過程使他們體會現(xiàn)實中錯綜復雜的數(shù)量關系,從而培養(yǎng)其抽象思維能力.
2.通過分組討論學習,體會在解決具體問題的過程中與他人合作的重要性,培養(yǎng)學生的團體協(xié)作精神,使學生獲得合作交流的學習方式.
3.通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學生進行辯證唯物主義教育.
4.通過創(chuàng)設問題串,讓學生仔細觀察、對比、歸納、整理,嘗試對有理數(shù)進行分類,體驗教學活動充滿著探索性和創(chuàng)造性.
教學重、難點及教學突破
重點:不等式的概念和不等式的解的概念.
難點:對文字表述的數(shù)量關系能列出不等式.
教學突破:由于學生在以前已經(jīng)對數(shù)量的大小關系和含數(shù)字的不等式有所了解,但還沒有接觸過含未知數(shù)的不等式,在學生分析問題的時候注意引入現(xiàn)實中大量存在的數(shù)量間的不等關系,研究它們的變化規(guī)律,使學生知道用不等式解決實際問題的方便之處.在本節(jié)的教學中能夠在組織學生討論的過程中適當?shù)貪B透變量的知識,讓學生感受其中的函數(shù)思想,并引導學生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別.在處理本節(jié)難點時指導學生練習有理數(shù)和代數(shù)式的知識,準確“譯出”不等式.
教學過程:
一.研究問題:
世紀公園的票價是:每人5元,一次購票滿30張可少收1元.某班有27名少先隊員去世公園進行活動.當領隊王小華準備好了零錢到售票處買了27張票時,愛動腦的李敏同紀學喊住了王小華,提議買30張票.但有的同學不明白.明明只有27個人,買30張票,豈不浪費嗎?
那么,究竟李敏的提議對不對呢?是不是真的浪費呢
二.新課探究:
分析上面的問題:設有x人要進世紀公園,①若x≥30,應該如何買票?②若x<30,則又該如何買票呢?
結(jié)論:至少要有多少人進公園時,買30張票才合算?
概括:1、不等式的定義:表示不等關系的式子,叫做不等式.不等式用符號>,<,≥,≤.
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-7<-5,3+4>1+4,a+2>a+1.
、茥l件不等式:x+3>6,a+2>3,y-3>-5.
三.基礎訓練.
例1、用不等式表示:⑴a是正數(shù);⑵b不是負數(shù);⑶c是非負數(shù);⑷x的平方是非負數(shù);⑸x的一半小于-1;⑹y與4的和不小于3.
注:⑴不等式表示代數(shù)式之間的不相等關系,與方程表示相等關系相對應;
⑵研究不等關系列不等式的重點是抓關鍵詞,弄清不等關系.
例2、用不等式表示:⑴a與1的和是正數(shù);⑵x的2倍與y的3倍的差是非負數(shù);⑶x的2倍與1的和大于—1;⑷a的一半與4的差的絕對值不小于a.
例3、當x=2時,不等式x-1<2成立嗎?當x=3呢?當x=4呢?
注:⑴檢驗字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號所表示的關系,就成立,否則就不成立.⑵代入法是檢驗不等式的解的重要方法.
學生練習:課本P42練習1、2、3.
四.能力拓展
學校組織學生觀看電影,某電影院票價每張12元,50人以上(含50人)的團體票可享受8折優(yōu)惠,現(xiàn)有45名學生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購團體票.
、耪垎査麄冑徺I團體票是否比不打折而按45人購票便宜;
、迫魧W生到該電影院人數(shù)不足50人,應至少有多少人買團體票比不打折而按實際人數(shù)購票便宜.
解:⑴按實際45人購票需付錢_________ 元,如果按50人購買團體票則需付錢50×12×80%=480元,所以購買團體票便宜.
⑵設有x人到電影院觀看電影,當x_____時,按實際人數(shù)買票______張,需付款_______元,而按團體票購票需付款________元,如果買團體票合算,那么應有不等式________________,
由①得,當x=45時,上式成立,讓我們再取一些數(shù)據(jù)試一試,將結(jié)果填入下表:
x12x比較480與12x的大小48<12x成立嗎?
30
40
41
42
由上表可見,至少要__________人時進電影院,購團體票才合算.
五.小結(jié):
⑴不等式的定義,不等式的解.
⑵對實際問題中探索得到的不等式的解,不僅要滿足數(shù)學式子,而且要注意實際意義.
六.作業(yè):課本P42習題8.1第1、2、3題.
補充題:
1.用不等式表示:
(1)與1的和是正數(shù);(2)的與的的差是非負數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差的絕對值不小于.
(5)的2倍減去1不小于與3的和;(6)與的平方和是非負數(shù);
(7)的2倍加上3的和大于-2且小于4;(8)減去5的差的絕對值不大于
2.小李和小張決定把省下的零用錢存起來.這個月小李存了168元,小張存了85元.下個月開始小李每月存16元,小張每月存25元.問幾個月后小張的存款數(shù)能超過小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉庫調(diào)運一輛農(nóng)用車到A縣和B縣的運費分別為40元和80元,從乙倉庫調(diào)運一輛農(nóng)用車到A縣和B縣的運費分別為30元和50元,(1)設從乙倉庫調(diào)往A縣農(nóng)用車輛,用含的代數(shù)式表示總運費W元;(2)請你用嘗試的方法,探求總運費不超過900元,共有幾種調(diào)運方案?你能否求出總運費最低的調(diào)運方案.
【認識不等式教案設計】相關文章:
《認識自己》教案設計10-19
認識時鐘的教案設計04-27
認識直角教案設計04-27
《小數(shù)的認識 》的教案設計04-27
認識un教案設計04-27
《認識乘法》的教案設計04-27
認識動物的教案設計04-27
認識圓柱的教案設計04-27
圓的認識教案設計04-28
認識倒數(shù)的教案設計04-27