初中八年級數(shù)學上冊教案
在教學工作者開展教學活動前,常常要根據(jù)教學需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。教案要怎么寫呢?下面是小編精心整理的初中八年級數(shù)學上冊教案,歡迎閱讀與收藏。
初中八年級數(shù)學上冊教案1
《正方形》教學設(shè)計
教學內(nèi)容分析:
、艑W習特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W習了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
、菍Ρ竟(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。
學生分析:
、艑W生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
、茖W生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。
教學目標:
⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學生的推理能力。
、乔楦袘B(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。
難點:探索正方形的判定,發(fā)展學生的推理能
教學方法:類比與探究
教具準備:可以活動的四邊形模型。
一、教學分析
(一)教學內(nèi)容分析
1.教材:義務(wù)教育課程標準實驗教科書《數(shù)學》九年級上冊(人民教育出版社)
2.本課教學內(nèi)容的地位、作用,知識的前后聯(lián)系
《中心對稱圖形》是新人教版九年級數(shù)學上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學習了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學生的'抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學生對中心對稱圖形的性質(zhì)有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構(gòu)知識的規(guī)律,有利于激發(fā)學生的學習情趣。
(二)教學對象分析
1.學生所在地區(qū)、學校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調(diào)動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。
2.學生的年齡特點和認知特點
班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結(jié)合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。
教學過程:
一:復習鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學生活動】
學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。
【教師活動】
評析學生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學生活動】
學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學生活動】
小組討論,舉手搶答。
【教師活動】
表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學生交流,感受正方形
三,應(yīng)用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學生舉手談?wù)撟约旱氖斋@。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
教學目標:
情意目標:培養(yǎng)學生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
(一)導入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學生回顧本課教學內(nèi)容,并提出尚存問題;
學生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中八年級數(shù)學上冊教案2
本學期我擔任初二年級(9)、(10)班的數(shù)學教學工作,八年級的數(shù)學教學任務(wù)非常重,既要完成新課的教學任務(wù),又要復習初一數(shù)學知識。同時要補差補缺,做好學生的思想工作,所以在制定八年級的教學計劃時,一定要注意時間的安排,同時把握好教學進度。
一、學情分析
通過對上學期幾次檢測分析,發(fā)現(xiàn)這一級的學生存在很嚴重的兩極分化。一方面是平時成績比較突出的學生基本上掌握了學習數(shù)學的方法和技巧,對學習數(shù)學興趣濃厚。另一方面是相當一部分學生因為各種原因,數(shù)學已經(jīng)落下許多知識,部分學生已喪失了學習數(shù)學的興趣。
二、指導思想
以《初中數(shù)學新課程標準》為準繩,深入開展新課程教學改革。以提高學生中考成績?yōu)槌霭l(fā)點,注重培養(yǎng)學生的基礎(chǔ)知識和基本技能,提高學生解題答題的能力和邏輯推理能力。同時完成八年級上冊數(shù)學教學任務(wù)。
三、教學目標
知識技能目標:了解軸對稱、軸對稱圖形、線段的垂直平分線、角的平分線的感念,理解軸對稱的基本性質(zhì);會利用性質(zhì)解決有關(guān)的問題。掌握整式的乘除和因式分解的運算。熟練掌握分式運算。知道樣本平均數(shù)、加權(quán)平均數(shù)的計算、及中位數(shù)、眾數(shù)。了解算術(shù)平方根、平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根。了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應(yīng);會解一元一次不等式(組)等。
能力目標:培養(yǎng)學生的觀察、探究、推理、歸納的能力,發(fā)展學生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應(yīng)用能力。態(tài)度情感目標:進一步感受數(shù)學與日常生活密不可分的聯(lián)系,同時對學生進行辯證唯物主義世界觀教育。
四、教材分析
本學期教學內(nèi)容,共計六章,第一章《軸對稱與軸對稱圖形》,本章是在學習了線段、角、平行線、三角形的基礎(chǔ)上進一步學習平面圖形的一些性質(zhì),主要內(nèi)容是軸對稱、軸對稱圖形、線段的垂直平分線、角的平分線的感念,理解軸對稱的基本性質(zhì);會利用性質(zhì)解決有關(guān)的問題。第二章《乘法公式與因式分解》是初一的整式的乘法的一個延續(xù),主要內(nèi)容有整式的乘法、乘法公式、因式分解。學好本章的運算性質(zhì)是學好本章內(nèi)容的基礎(chǔ)。本章難點是整式乘法與因式分解的關(guān)系和相互的轉(zhuǎn)化,重點是乘法公式。第三章《分式》是在學習整式的基礎(chǔ)上來研究的,主要內(nèi)容就是分式運算、分式的化簡,這部分內(nèi)容對以后的方程、函數(shù)等都有非常重要的作用。第四章《樣本與估計》本章的主要內(nèi)容就是平均數(shù)、加權(quán)平均數(shù)的計算、及中位數(shù)、眾數(shù),為以后學習統(tǒng)計初步打下了基礎(chǔ)。第五章《實數(shù)》主要內(nèi)容是算術(shù)平方根、平方根、立方根的概念,無理數(shù)和實數(shù)的概念,實數(shù)和數(shù)軸上的點一一對應(yīng);勾股定理及勾股定理的應(yīng)用,通過探索三角形的三邊關(guān)系,得到勾股定理,同時還介紹了一種直角三角形的判定方法,最后介紹了勾股定理的'應(yīng)用。重點是勾股定理,難點是勾股定理的應(yīng)用。這又學習了直角三角形的一個性質(zhì),為以后的學習埋下了伏筆。第六章《一元一次不等式》主要內(nèi)容就是解一元一次不等式,這為以后的一次函數(shù)和一次方程,一次不等式三者的關(guān)系的學習提供了很好的探究條件。
五、教學措施
1、精心備課,設(shè)置好每個教學情境,激發(fā)學生學習興趣和欲望。深入淺出,幫助學生理解各個知識點,突出重點,講透難點。
2、加強對學生課后的輔導,尤其是中等生和后進生的基礎(chǔ)知識的輔導,提高他們的解題作答能力和正確率。
3、精心組織單元測試,認真分析試卷中暴露出來的問題,并對其中大多數(shù)學生存在的問題集中進行分析與講解,力求透徹。對于少部分學生存在的問題進行小組輔導,突破難點。
4、做好學生的思想教育工作,促進學生學習的積極性,從而提高學生的學習成績。
初中八年級數(shù)學上冊教案3
一、指導思想
本學期,我們將在校長室及教務(wù)處的領(lǐng)導下,堅持學校制定的“以教學為中心,把質(zhì)量當根本”的原則,使學生切實學好從事現(xiàn)代化建設(shè)和進一步學習現(xiàn)代化科學技術(shù)所必需的數(shù)學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學生情況分析
八年級是初中學習過程中的關(guān)鍵時期,學生基礎(chǔ)的好壞,直接影響到將來能否升學。本人所教八年級2班,學生無尖子生,中等生多,有三分之一的學習不愛學習,問題較嚴重,要想獲得理想的成績,老師和學生都要付出努力,查缺補漏,充分發(fā)揮學生的主體作用,注重方法,培養(yǎng)能力。
三、教材分析
第十一章全等三角形,主要介紹了三角形全等的性質(zhì)和判定方法及直角三角形全等的特殊條件。更多的注重學生推理意識的建立和對推理過程的理解,學生在直觀認識和簡單說明理由的基礎(chǔ)上,從幾個基本事實出發(fā),比較嚴格地證明全等三角形的一些性質(zhì),探索全等三角形的條件。
第十二章,軸對稱立足于生活經(jīng)驗和數(shù)學活動經(jīng)歷,從觀察生活中的軸對稱,從整體的角度直觀地認識并概括出軸對稱的特征,通過逐步分析角、線段、等腰三角形等簡單的軸對稱圖形,引入等腰三角形的.性質(zhì)和判定的概念。
第十三章,實數(shù)主要包括算術(shù)平方根、平方根、立方根以及實數(shù)的有關(guān)概念和運算。
第十四章,一次函數(shù)通過對變量的考察,體會函數(shù)的概念,并逐步研究其中最為簡單的一種函數(shù),一次函數(shù)。了解函數(shù)的有關(guān)性質(zhì)和研究方法,并初步形成利用函數(shù)觀點認識現(xiàn)實世界的意識和能力。在教材中,通過體現(xiàn)“問題情境—建立模型—概念、規(guī)律、應(yīng)用與拓展”的模式,讓學生從實際問題情境中抽象出函數(shù)以及一次函數(shù)的概念,并進行探索一次函數(shù)及其圖象的性質(zhì),最后利用一次函數(shù)及其圖象解決有關(guān)現(xiàn)實問題。
第十五章,整式的乘除與因式分解,在形式上國求突出:整式及整式運算產(chǎn)生的實際背景使學生經(jīng)歷實際問題“符號化”的過程,發(fā)展符號感;有關(guān)運算法則的探索過程為探索有關(guān)運算法則設(shè)置歸納、類比等活動,對算理的理解和基本運算技能的掌握,設(shè)置恰當數(shù)量和難度的的符號運算,同時要求學生說明運算的依據(jù)。
四、教學措施
1、課堂上注重學生動手能力,排除學習中的障礙。
2、認真?zhèn)湔n,精心授課,抓緊課堂四十分鐘,努力提高課堂教學效果。
3、抓住關(guān)鍵,分散難點,突出重點,在培養(yǎng)學生能力上下功夫。
4、不斷改進教學方法,提高自身業(yè)務(wù)素質(zhì)。
5、教學中注重自主學習,合作學習,探險究學習。
6、精心設(shè)置教學情境,激發(fā)學生學習數(shù)學的興趣,從生活入手,總結(jié)數(shù)學規(guī)律,立足于用數(shù)學知識解決生活中存在的實際問題。
7、加強對學生的課后輔導,發(fā)展優(yōu)等生應(yīng)用數(shù)學知識的能力,鞏固中等學生的基礎(chǔ)知識和學習成績,促進后進生的進步。
8、成立互助學習小組,以優(yōu)帶良,以優(yōu)促后,實現(xiàn)全體學生共同進步的目標。
五、教學目標
知識技能目標:認識實數(shù),掌握實數(shù)有關(guān)的的運算方法;學習一次函數(shù)的圖像、性質(zhì)與應(yīng)用;掌握全等三角形的性質(zhì)與判定、軸對稱及軸對稱圖形的特點;掌握整式的乘除運算、乘法公式和因式分解。
過程方法目標:初步建立數(shù)形結(jié)合的思維模式,學會觀察、分析、歸納、總結(jié)幾何圖形的內(nèi)在特點,學會使用數(shù)學語言表示數(shù)學關(guān)系。態(tài)度情感目標:從生活入手認識數(shù)學,探索數(shù)學規(guī)律,并將數(shù)學知識回歸到生活之中。
初中八年級數(shù)學上冊教案4
教學目標:
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。
重點難點:
重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點:勾股定理的發(fā)現(xiàn)
教學過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學生的學習熱情,導入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的.貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖
1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?在學生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖
1—2中,A,B,C之間的面積之間有什么關(guān)系?
學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖
1—3中,A,B,C之間有什么關(guān)系?
2、圖
1—4中,A,B,C之間有什么關(guān)系?
3、從圖
1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學生討論、交流形成共識后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖
1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以
5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題
△ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個題目條件不足,第三邊無法求得。
2、練習P
7 §1.1 1
六、作業(yè)
課本P7 §1.1 2、3、4
初中八年級數(shù)學上冊教案5
分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>
2。當x
>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的.被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中八年級數(shù)學上冊教案6
教學目標
1.認識變量、常量.
。玻畬W會用含一個變量的代數(shù)式表示另一個變量.
教學重點
1.認識變量、常量.
2.用式子表示變量間關(guān)系.
教學難點
用含有一個變量的式子表示另一個變量.
教學過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.
。保埻瑢W們根據(jù)題意填寫下表:
t/時 1 2 3 4 5
s/千米
。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.
。常囉煤瑃的式子表示s.
Ⅱ.導入新課
首先讓學生思考上面的幾個問題,可以互相討論一下,然后回答.
從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關(guān)系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.
這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時.
[活動一]
。保繌堧娪捌笔蹆r為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?
。玻谝桓鶑椈傻南露藨覓熘匚,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?
引導學生通過合理、正確的思維方法探索出變化規(guī)律.
結(jié)論:
。保鐖鲭娪捌狈渴杖耄150×10=1500(元)
日場電影票房收入:205×10=20xx(元)
晚場電影票房收入:310×10=3100(元)
關(guān)系式:y=10x
2.掛1kg重物時彈簧長度: 1×0.5+10=10.5(cm)
掛2kg重物時彈簧長度:2×0.5+10=11(cm)
掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)
關(guān)系式:L=0.5m+10
通過上述活動,我們清楚地認識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.
[活動二]
1.要畫一個面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?
。玻10m長的.繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?
結(jié)論:
。保笠阎娣e的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=
面積為10cm2的圓半徑r= ≈1.78(cm)
面積為20cm2的圓半徑r= ≈2.52(cm)
關(guān)系式:r=
。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.
若長為1cm,則寬為5-1=4(cm)
據(jù)矩形面積公式:S=1×4=4(cm2)
若長為2cm,則寬為5-2=3(cm)
面積S=2×(5-2)=6(cm2)
… …
若長為xcm,則寬為5-x(cm)
面積S=x?(5-x)=5x-x2(cm2)
從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學過的一些有關(guān)知識公式進行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.
Ⅲ.隨堂練習
。保徺I一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.
。玻粋三角形的底邊長5cm,高h可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.
解:1.買1支鉛筆價值1×0.2=0.2(元)
買2支鉛筆價值2×0.2=0.4(元)
……
買x支鉛筆價值x×0.2=0.2x(元)
所以y=0.2x
其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.
。玻鶕(jù)三角形面積公式可知:
當高h為1cm時,面積S= ×5×1=2.5cm2
當高h為2cm時,面積S= ×5×2=5cm2
… …
當高為hcm,面積S= ×5×h=2.5hcm2
初中八年級數(shù)學上冊教案7
本學期我擔任了八年級的數(shù)學教學,為了搞好這學期的數(shù)學教學工作,我計劃做好以下幾方面的工作:
一、理論學習
抓好教育理論特別是最新的教育理論的學習,及時了解課改信息和課改動向,轉(zhuǎn)變教學觀念,形成新課教學思想,樹立現(xiàn)代化、科學化的教育思想。
二、做好各時期的計劃
為了搞好教學工作,以課程改革的思想為指導,根據(jù)學校的工作安排以及八年級的數(shù)學教學任務(wù)和內(nèi)容,做好學期教學工作的總體計劃和安排,并且對各單元、各課題的進度情況進行詳細計劃。
三、備好每堂課
認真鉆研新的課程標準和教材,做好初中八年級階段的總體備課工作,對總體教學情況和各單元、專題做到心中有數(shù),備好學生的學習和對知識的掌握情況,寫好每節(jié)課的教案為上好課提供保證,做好課后反思和課后總結(jié)工作,以不為提高自己的教學理論水平和教學實踐能力。
四、做好課堂教學
創(chuàng)設(shè)教學情境,激發(fā)學習興趣,愛因斯坦曾經(jīng)說過:“興趣是的老師。”激發(fā)學生的學習興趣,是數(shù)學教學過程中提高質(zhì)量的重要手段之一。
結(jié)合教學內(nèi)容,選一些與實際聯(lián)系緊密的數(shù)學問題讓學生去解決,教學組織合理,教學內(nèi)容語言生動。相盡各種辦法讓學生愛聽、樂聽,以全面提高課堂教學質(zhì)量。
五、批改作業(yè)
精批細改好每一位學生的`每份作業(yè),學生的作業(yè)缺陷,師生都心中有數(shù)。
對每位同學的作業(yè)訂正和掌握情況都盡力做到及時反饋,再次批改,讓學生獲得了一個較好的鞏固機會。
六、做好課外輔導
全面關(guān)心學生,這是老師的神圣職責,在課后能對學進行針對性的輔導,解答學生在理解教材與具體解題中的困難,指導課外閱讀因材施教,使優(yōu)生盡可能“吃飽”,獲得進一步提高;使差生也能及時掃除學生障礙,增強學生信心,盡可能“吃得了”。
積極開展數(shù)學講座,課外興趣小組等課外活動。充分調(diào)動學生學習數(shù)學的積極性,擴大他們的知識視野,發(fā)展智力水平,提高分析問題與解決問題的能力。
總之通過做好教學工作的每一環(huán)節(jié),盡的努力,想出各種有效的辦法,以提高教學質(zhì)量。
初中八年級數(shù)學上冊教案8
一、指導思想
通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設(shè)和進一步學習現(xiàn)代化科學技術(shù)所必需的數(shù)學基本知識、基本技能、基本思想和基本活動經(jīng)驗;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學情分析
八年級是初中學習過程中的關(guān)鍵時期,學生基礎(chǔ)的好壞,直接影響到將來是否能升學。有的學生非;钴S,有少數(shù)學生不上進,思維不緊跟老師。還有少數(shù)同學基礎(chǔ)特差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、教材分析
“全等三角形”一章首先讓學生認識形狀、大小相同的圖形,給出全等三角形的概念,然后讓學生探索兩個三角形全等的條件,并運用有關(guān)結(jié)論進行證明,最后掌握角的平分線的性質(zhì)。
“軸對稱”一章首先讓學生認識軸對稱,探索它的性質(zhì)。然后讓學生能夠按要求作出簡單圖形經(jīng)過軸對稱后的圖形,從而能利用軸對稱進行圖案設(shè)計。在此基礎(chǔ)上,學習等腰三角形的有關(guān)概念和性質(zhì)。這樣,學生就可以從軸對稱的角度把握等腰三角形的有關(guān)內(nèi)容。
“實數(shù)”一章首先讓學生了解算術(shù)平方根、平方根的概念,會用平方運算求某些非負數(shù)的算術(shù)平方根、平方根。然后讓學生了解立方根的概念,會用立方運算求某些數(shù)的立方根。最后讓學生了解無理數(shù)和實數(shù)的概念。
我們生活在變化的世界中,時間推移、人口增長、財富積累,都是變化的例子。函數(shù)就是描述這些變化的一種數(shù)學工具。通過分析實際問題中的變量關(guān)系,就得到了實際問題的一種新的數(shù)學模型,并能利用它解決非常廣泛的問題。對于函數(shù)的內(nèi)容,本套教科書是分散安排的,本冊安排一次函數(shù)一章,八年級下冊安排反比例函數(shù),九年級下冊安排二次函數(shù)、銳角三角函數(shù)。這樣安排可以使學生不斷加深對函數(shù)思想的理解。在本冊“一次函數(shù)”一章,首先讓學生探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,了解常量,變量的意義,了解函數(shù)的概念和三種表示方法。在此基礎(chǔ)上,再來學習一次函數(shù)的內(nèi)容。在“一次函數(shù)”一章,專門安排“用函數(shù)觀點看方程(組)與不等式”一節(jié),分別探討一次函數(shù)與一元一次方程,一次函數(shù)與一元一次不等式,一次函數(shù)與二元一次方程(組)之間的關(guān)系。由此可以看出本章在全套教科書中承上啟下的作用。最后安排“課題學習選擇方案”。
學生已經(jīng)知道,可以用字母表示數(shù),用含有字母的式子表示實際問題中的數(shù)量關(guān)系。對整式的進一步討論,將使學生能夠解決更多與數(shù)量關(guān)系有關(guān)的問題,加深對“從數(shù)到式”這個由具體到抽象的過程的認識。在“整式的乘除與因式分解”一章,首先讓學生學會簡單的整式乘除運算。在此基礎(chǔ)上,讓學生了解因式分解的.概念,會用提公因式法,公式法分解因式。這些內(nèi)容為以后內(nèi)容,特別是下一章分式的學習作好了準備。
四、教學措施
1、加強教學“六認真”,面向全體學生。由于學生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應(yīng)從大多數(shù)學生的實際出發(fā),并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學習數(shù)學的興趣,指導他們改進學習方法。幫助他們解決學習中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學有余力的學生,要通過講授選學內(nèi)容和組織課外活動等多種形式,滿足他們的學習愿望,發(fā)展他們的數(shù)學才能。
2、重視改進教學方法,堅持啟發(fā)式,反對注入式。教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學生課前完成,教學中教師應(yīng)幫助學生梳理新課知識,指出重點和易錯點,解答學生預習時遇到的問題,再設(shè)計提高題由學生進行嘗試,使學生在學習中體會成功,調(diào)動學習積極性,同時也可激勵學生自我編題。努力培養(yǎng)學生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學模型的能力,注意激勵學生的創(chuàng)新意識。
3、改革作業(yè)結(jié)構(gòu)減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學生都能在原有基礎(chǔ)上提高。
4、課后輔導實行流動分層。
初中八年級數(shù)學上冊教案9
教學目標
一、教學知識點:
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓練要求:
1.通過具體實例認識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價值觀要求
1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.
2.通過學習使學生能用數(shù)學的眼光看待生活中的有關(guān)問題,進一步發(fā)展學生的數(shù)學觀.
教學重點:旋轉(zhuǎn)的基本性質(zhì).
教學難點:探索旋轉(zhuǎn)的基本性質(zhì).
教學方法:
1、遵循學生是學習的主人的原則,在為學生創(chuàng)造大量實例的基礎(chǔ)上,引導學生自主思考、交流、討論、歸納、學習。
2、采用多媒體課件輔助教學。
教學過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?
1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的
2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.
3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的同樣,線段OB與OE是相等的
(4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的
(4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的
看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的`位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的
因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.
。劾1](課本68頁例1)
。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習
課本P69隨堂練習.
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時小結(jié)
五.課后作業(yè):課本P69習題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?
過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學生仔細觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的
板書設(shè)計:略
教學反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養(yǎng)學生的空間想象能力。
初中八年級數(shù)學上冊教案10
教學目標:
知識與技能目標:
1.掌握矩形的概念、性質(zhì)和判別條件.
2.提高對矩形的性質(zhì)和判別在實際生活中的應(yīng)用能力.
過程與方法目標:
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法.
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.
情感與態(tài)度目標:
1.在操作活動過程中,加深對矩形的的認識,并以此激發(fā)學生的探索精神.2.通過對矩形的探索學習,體會它的內(nèi)在美和應(yīng)用美.
教學重點:矩形的性質(zhì)和常用判別方法的理解和掌握.
教學難點:矩形的性質(zhì)和常用判別方法的綜合應(yīng)用.
教學方法:分析啟發(fā)法
教具準備:像框,平行四邊形框架教具,多媒體課件.
教學過程設(shè)計:
一.情境導入:
演示平行四邊形活動框架,引入課題.
二.講授新課:
1.歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學生思考、回答.)
結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形.
八年級數(shù)學上冊教案2.探究矩形的性質(zhì):
。1).問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學生思考、回答.)
結(jié)論:矩形的四個角都是直角.
。2).探索矩形對角線的性質(zhì):
讓學生進行如下操作后,思考以下問題:(幻燈片展示)
在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.
①.隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?
、.當∠α是銳角時,兩條對角線的長度有什么關(guān)系?當∠α是鈍角時呢?
、.當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?
(學生操作,思考、交流、歸納.)
結(jié)論:矩形的兩條對角線相等.
。3).議一議:(展示問題,引導學生討論解決.)
、.矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.
、.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
。4).歸納矩形的性質(zhì):(引導學生歸納,并體會矩形的“對稱美”.)
矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.
例解:(性質(zhì)的.運用,滲透矩形對角線的“化歸”功能.)
如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4
厘米.求BD與AD的長.
。ㄒ龑W生分析、解答.)
探索矩形的判別條件:(由修理桌子引出)
。1).想一想:(學生討論、交流、共同學習)
對角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對角線相等的平行四邊形是矩形.
。ɡ碛煽捎蓭熒餐治,然后用幻燈片展示完整過程.)
。2).歸納矩形的判別方法:(引導學生歸納)
有一個內(nèi)角是直角的平行四邊形是矩形.
對角線相等的平行四邊形是矩形.
三.課堂練習:(出示P98隨堂練習題,學生思考、解答.)
四.新課小結(jié):
通過本節(jié)課的學習,你有什么收獲?
。◣熒餐瑥闹R與思想方法兩方面小結(jié).)
五.作業(yè)設(shè)計:P99習題4.6第1、2、3題.
板書設(shè)計:
4.矩形
矩形的定義:
矩形的性質(zhì):
前面知識的小系統(tǒng)圖示:
三.矩形的判別條件:
例1
課后反思:在平行四邊形及菱形的教學后。學生已經(jīng)學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決。總的看來這節(jié)課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
【初中八年級數(shù)學上冊教案】相關(guān)文章:
初中數(shù)學八年級上冊教案02-06
初中數(shù)學八年級上冊教案精選5篇06-05
初中八年級上冊數(shù)學教案12-18
初中數(shù)學八年級上冊教案(5篇)02-08
初中數(shù)學八年級上冊教案5篇02-07
初中八年級數(shù)學上冊矩形教案05-04
初中八年級數(shù)學上冊優(yōu)秀教案《梯形》05-04
初中八年級數(shù)學上冊生活中的旋轉(zhuǎn)的教案05-04
初中數(shù)學八年級教案11-05